Issue |
A&A
Volume 577, May 2015
|
|
---|---|---|
Article Number | A37 | |
Number of page(s) | 27 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201425302 | |
Published online | 28 April 2015 |
Anatomy of the AGN in NGC 5548
II. The spatial, temporal, and physical nature of the outflow from HST/COS Observations⋆
1
Department of Physics, Virginia Tech, Blacksburg, VA
24061, USA
e-mail: arav@vt.edu
2
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD
21218,
USA
3
Department of Physics and Astronomy, The Johns Hopkins
University, Baltimore, MD
21218,
USA
4
SRON Netherlands Institute for Space Research,
Sorbonnelaan 2, 3584 CA
Utrecht, The
Netherlands
5
Leiden Observatory, Leiden University,
Post Office Box 9513,
2300 RA
Leiden, The
Netherlands
6
INAF−IASF Bologna, via Gobetti 101, 40129
Bologna,
Italy
7
Mullard Space Science Laboratory, University College
London, Holmbury St. Mary,
Dorking, Surrey,
RH5 6NT,
UK
8
Univ. Grenoble Alpes, IPAG, 38000
Grenoble,
France
9
CNRS, IPAG, 38000
Grenoble,
France
10
Instituto de Astronomía, Universidad Católica del
Norte, Avenida Angamos 0610,
Casilla 1280, Antofagasta, Chile
11
Department of Physics, University of Oxford,
Keble Road, Oxford, OX1
3RH, UK
12
Department of Physics, Technion-Israel Institute of
Technology, 32000
Haifa,
Israel
13
Dipartimento di Matematica e Fisica, Università degli Studi Roma
Tre, via della Vasca Navale
84, 00146
Roma,
Italy
14
Department of Astronomy, University of Geneva,
16 Ch. d’Ecogia, 1290
Versoix,
Switzerland
15
Cahill Center for Astronomy and Astrophysics, California Institute
of Technology, Pasadena, CA
91125,
USA
16
Université de Toulouse, UPS-OMP, IRAP,
31028
Toulouse,
France
17
CNRS, IRAP, 9
Av. colonel Roche, BP
44346, 31028
Toulouse Cedex 4,
France
18
Max-Planck-Institut für extraterrestrische Physik,
Giessenbachstrasse,
85748
Garching,
Germany
19
Department of Astronomy, The Ohio State University,
140W 18th Avenue, Columbus, OH
43210,
USA
20
Center for Cosmology & AstroParticle Physics, The Ohio State
University, 191 West Woodruff
Avenue, Columbus,
OH
43210,
USA
21
Institute of Astronomy, University of Cambridge,
Madingley Rd, Cambridge, CB3 0HA, UK
22
Astronomisches Institut, Ruhr-Universität Bochum,
Universitätsstraße 150, 44801
Bochum,
Germany
23
INAF/IAPS−
via Fosso del Cavaliere 100,
00133
Roma,
Italy
24
Research Center for Measurement in Advanced Science, Faculty of
Science, Rikkyo University 3-34-1
Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
Received: 7 November 2014
Accepted: 2 March 2015
Context. AGN outflows are thought to influence the evolution of their host galaxies and of super massive black holes. Our deep multiwavelength campaign on NGC 5548 has revealed a new, unusually strong X-ray obscuration, accompanied by broad UV absorption troughs observed for the first time in this object. The X-ray obscuration caused a dramatic decrease in the incident ionizing flux on the outflow that produces the long-studied narrow UV absorption lines in this AGN. The resulting data allowed us to construct a comprehensive physical, spatial, and temporal picture for this enduring AGN wind.
Aims. We aim to determine the distance of the narrow UV outflow components from the central source, their total column-density, and the mechanism responsible for their observed absorption variability.
Methods. We study the UV spectra acquired during the campaign, as well as from four previous epochs (1998−2011). Our main analysis tools are ionic column-density extraction techniques, photoionization models based on the code CLOUDY, and collisional excitation simulations.
Results. A simple model based on a fixed total column-density absorber, reacting to changes in ionizing illumination, matches the very different ionization states seen in five spectroscopic epochs spanning 16 years. The main component of the enduring outflow is situated at 3.5 ± 1.1 pc from the central source, and its distance and number density are similar to those of the narrow-emitting-line region in this object. Three other components are situated between 5−70 pc and two are farther than 100 pc. The wealth of observational constraints and the anti-correlation between the observed X-ray and UV flux in the 2002 and 2013 epochs make our physical model a leading contender for interpreting trough variability data of quasar outflows.
Conclusions. This campaign, in combination with prior UV and X-ray data, yields the first simple model that can explain the physical characteristics and the substantial variability observed in an AGN outflow.
Key words: galaxies: Seyfert
Appendix A is available in electronic form at http://www.aanda.org
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.