Issue |
A&A
Volume 574, February 2015
|
|
---|---|---|
Article Number | A87 | |
Number of page(s) | 6 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/201425135 | |
Published online | 29 January 2015 |
Collision rates for electron excitation of Mg V lines⋆
Department of Physics, Clark Atlanta University, Atlanta, GA 30314, USA
e-mail: stayal@cau.edu
Received: 9 October 2014
Accepted: 26 November 2014
Aims. Transition probabilities and electron impact excitation collision strengths and rates for astrophysically important lines in Mg V are reported. The 86 fine-structure levels of the 2s22p4, 2s2p5, 2p6, 2s22p33s, 2s22p33p and 2s22p33d configurations are included in our calculations. The effective collision strengths are presented as a function of electron temperature for solar and other astrophysical applications.
Methods. The collision strengths have been calculated using the B-splineBreit-Pauli R-matrixmethod for all fine-structure transitions among the 86 levels. The one-body mass, Darwin and spin-orbit relativistic effects are included in the Breit-Pauli Hamiltonian in the scattering calculations. The one-body and two-body relativistic operators are included in the multiconfiguration Hartree-Fock calculations of transition probabilities. Several sets of non-orthogonal spectroscopic and correlation radial orbitals are used to obtain accurate description of Mg V 86 levels and to represent the scattering functions.
Results. The calculated excitation energies are in very good agreement with experiment and represents an improvement over the previous calculations. The present collision strengths show good agreement with the previously available R-matrix and distorted-wave calculations. The oscillator strengths for E1 transitions normally compare very well with previous calculations. The thermally averaged collision strengths are obtained by integrating total resonant and non-resonant collision strengths over a Maxwellian distribution of electron energies and these are presented over the temperature range log 10Te = 3.2−6.0 K.
Key words: atomic data / atomic processes / line: formation
Tables 1–4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A87
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.