Issue |
A&A
Volume 573, January 2015
|
|
---|---|---|
Article Number | A112 | |
Number of page(s) | 10 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201322250 | |
Published online | 07 January 2015 |
Photoionising feedback and the star formation rates in galaxies
1 SUPA, School of Physics & Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, UK
e-mail: iab1@st-andrews.ac.uk
2 Excellence Cluster “Universe”, Boltzmannstr. 2, 85748 Garching, Germany
Received: 10 July 2013
Accepted: 11 October 2014
Aims. We investigate the effects of ionising photons on accretion and stellar mass growth in a young star forming region, using a Monte Carlo radiation transfer code coupled to a smoothed particle hydrodynamics (SPH) simulation.
Methods. We introduce the framework with which we correct stellar cluster masses for the effects of photoionising (PI) feedback and compare to the results of a full ionisation hydrodynamics code.
Results. We present results of our simulations of star formation in the spiral arm of a disk galaxy, including the effects of photoionising radiation from high mass stars. We find that PI feedback reduces the total mass accreted onto stellar clusters by ≈23% over the course of the simulation and reduces the number of high mass clusters, as well as the maximum mass attained by a stellar cluster. Mean star formation rates (SFRs) drop from SFRcontrol = 4.2 × 10-2 M⊙ yr-1 to SFRMCPI = 3.2 × 10-2 M⊙ yr-1 after the inclusion of PI feedback with a final instantaneous SFR reduction of 62%. The overall cluster mass distribution appears to be affected little by PI feedback.
Conclusions. We compare our results to the observed extra-galactic Schmidt-Kennicutt relation and the observed properties of local star forming regions in the Milky Way and find that internal photoionising (PI) feedback is unlikely to reduce SFRs by more than a factor of ≈2 and thus may play only a minor role in regulating star formation.
Key words: HII regions / radiative transfer / stars: massive
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.