Issue |
A&A
Volume 570, October 2014
|
|
---|---|---|
Article Number | A102 | |
Number of page(s) | 14 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201424040 | |
Published online | 30 October 2014 |
The population of early-type galaxies: how it evolves with time and how it differs from passive and late-type galaxies
1
INAF – Osservatorio Astronomico di Brera, via Brera 28,
20121
Milano
Italy
e-mail:
sonia.tamburri@brera.inaf.it
2
Dipartimento di Scienza e Alta Tecnologia, Universitá degli Studi
dell’Insubria, via Valleggio
11, 22100
Como,
Italy
Received: 21 April 2014
Accepted: 2 September 2014
Aims. There are two aims to our analysis. On the one hand we are interested in addressing whether a sample of morphologically selected early-type galaxies (ETGs) differs from a sample of passive galaxies in terms of galaxy statistics. On the other hand we study how the relative abundance of galaxies, the number density, and, the stellar mass density for different morphological types change over the redshift range 0.6 ≤ z ≤ 2.5.
Methods. From the 1302 galaxies brighter than Ks(AB) = 22 selected from the GOODS-MUSIC catalogue, we classified the ETGs, i.e. elliptical (E) and spheroidal galaxies (E/S0), on the basis of their morphology and the passive galaxies on the basis of their specific star formation rate (sSFR ≤ 10-11 yr-1). Since the definition of a passive galaxy depends on the model parameters assumed to fit the spectral energy distribution of the galaxy, in addition to the assumed sSFR threshold, we probed the dependence of this definition and selection on the stellar initial mass function (IMF).
Results. We find that spheroidal galaxies cannot be distinguished from the other morphological classes on the basis of their low star formation rate, irrespective of the IMF adopted in the models. In particular, we find that a large fraction of passive galaxies (>30%) are disc-shaped objects and that the passive selection misses a significant fraction (~26%) of morphologically classified ETGs. Using the sample of 1302 galaxies morphologically classified into spheroidal galaxies (ETGs) and non-spheroidal galaxies (LTGs), we find that the fraction of these two morphological classes is constant over the redshift range 0.6 ≤ z ≤ 2.5, being 20–30% the fraction of ETGs and 70–80% the fraction of LTGs. However, at z < 1 these fractions change among the population of the most massive (M∗ ≥ 1011 M⊙) galaxies, with the fraction of massive ETGs rising up to 40% and the fraction of massive LTGs decreasing to 60%. Parallel to this trend, we find that the number density and the stellar mass density of the whole population of massive galaxies increase by almost a factor of ~10 between 0.6 ≤ z ≤ 2.5, with a faster increase of these densities for the ETGs than for the LTGs. Finally, we find that the number density of the highest-mass galaxies both ETGs and LTGs (M∗> 3−4 × 1011 M⊙) does not increase from z ~ 2.5, contrary to the lower mass galaxies. This suggests that the most massive galaxies formed at z> 2.5−3 and that the assembly of such high-mass galaxies is not effective at lower redshift.
Key words: galaxies: evolution / galaxies: elliptical and lenticular, cD / galaxies: formation / galaxies: high-redshift
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.