Issue |
A&A
Volume 567, July 2014
|
|
---|---|---|
Article Number | A131 | |
Number of page(s) | 4 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201423886 | |
Published online | 29 July 2014 |
Research Note
Particle energisation in a collapsing magnetic trap model: the relativistic regime
School of Mathematics and Statistics, University of St
Andrews,
St. Andrews
KY16 9SS,
UK
e-mail: se11@st-andrews.ac.uk; tn3@st-andrews.ac.uk
Received:
26
March
2014
Accepted:
18
June
2014
Context. In solar flares, a large number of charged particles is accelerated to high energies. By which physical processes this is achieved is one of the main open problems in solar physics. It has been suggested that during a flare, regions of the rapidly relaxing magnetic field can form a collapsing magnetic trap (CMT) and that this trap may contribute to particle energisation.
Aims. In this Research Note we focus on a particular analytical CMT model based on kinematic magnetohydrodynamics. Previous investigations of particle acceleration for this CMT model focused on the non-relativistic energy regime. It is the specific aim of this Research Note to extend the previous work to relativistic particle energies.
Methods. Particle orbits were calculated numerically using the relativistic guiding centre equations. We also calculated particle orbits using the non-relativistic guiding centre equations for comparison.
Results. For mildly relativistic energies the relativistic and non-relativistic particle orbits mainly agree well, but clear deviations are seen for higher energies. In particular, the final particle energies obtained from the relativistic calculations are systematically lower than the energies reached from the corresponding non-relativistic calculations, and the mirror points of the relativistic orbits are systematically higher than for the corresponding non-relativistic orbits.
Conclusions. While the overall behaviour of particle orbits in CMTs does not differ qualitatively when using the relativistic guiding centre equations, there are a few systematic quantitative differences between relativistic and non-relativistic particle dynamics.
Key words: Sun: corona / Sun: activity / Sun: flares / acceleration of particles
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.