Issue |
A&A
Volume 564, April 2014
|
|
---|---|---|
Article Number | A131 | |
Number of page(s) | 10 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201323276 | |
Published online | 17 April 2014 |
The coronal energy input from magnetic braiding
1 Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK
e-mail: anthony.yeates@durham.ac.uk
2 Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA
3 School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
Received: 18 December 2013
Accepted: 14 March 2014
We estimate the energy input into the solar corona from photospheric footpoint motions, using observations of a plage region by the Hinode Solar Optical Telescope. Assuming a perfectly ideal coronal evolution, two alternative lower bounds for the Poynting flux are computed based on field line footpoint trajectories, without requiring horizontal magnetic field data. When applied to the observed velocities, a bound based solely on displacements between the two footpoints of each field line is tighter than a bound based on relative twist between field lines. Depending on the assumed length of coronal magnetic field lines, the higher bound is found to be reasonably tight compared with a Poynting flux estimate using an available vector magnetogram. It is also close to the energy input required to explain conductive and radiative losses in the active region corona. Based on similar analysis of a numerical convection simulation, we suggest that observations with higher spatial resolution are likely to bring the bound based on relative twist closer to the first bound, but not to increase the first bound substantially. Finally, we put an approximate upper bound on the magnetic energy by constructing a hypothetical “unrelaxed” magnetic field with the correct field line connectivity.
Key words: Sun: corona / Sun: granulation / Sun: magnetic fields / Sun: photosphere
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.