Issue |
A&A
Volume 564, April 2014
|
|
---|---|---|
Article Number | A111 | |
Number of page(s) | 5 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201322723 | |
Published online | 15 April 2014 |
Dust temperature maps of the Galactic plane: The Herschel spectral energy distribution fitting with Cloudy predictions⋆,⋆⋆
1
National Astronomical Observatories,
20A Datun Road, Chaoyang District,
100012
Beijing,
PR China
e-mail:
mhuang@nao.cas.cn
2
University of Chinese Academy of Sciences,
100049
Beijing, PR
China
Received:
21
September
2013
Accepted:
11
February
2014
Context. Dust grains absorb the interstellar far ultra-violet and visible photons and re-emit them in far-infrared (FIR) wavebands. The dust FIR continuum can be predicted by a grid of models using various values of the interstellar radiation field.
Aims. We analyze the dust continuum emission in two Hi-GAL science-demonstration phase (SDP) fields using both the radiative transfer code, Cloudy, and the DustEM dust model, to explore the effect of radiative transfer on dust temperature. The 500 μm sub-millimeter excess emission and the very small grain (VSG) contribution to the 70 μm intensity are investigated by spectral energy distribution (SED) fitting using the Cloudy model.
Methods. By comparing the observation with the model prediction, we derive dust temperature maps of the two SDP fields by fitting the dust SED with 4-band data (SPIRE bands plus PACS 160 μm) using both Cloudy and DustEM models. Considering radiative transfer and grain physics simultaneously, we investigate the existence of a 500 μm excess and estimate the VSG contribution to the 70 μm intensity by fitting the dust SED with 3-band data (160, 250, and 350 μm) and 5-band data (SPIRE and PACS bands), respectively.
Results. We confirm that the field with star formation activities have a higher temperature (18.7 ± 0.9 K) than the quiescent region (15.2 ± 0.6 K). We find that the radiative transfer affects the FIR SED of the SDP fields and results in a higher temperature distribution than the dust-only model fit. There is no significant detection of a 500 μm excess in the two SDP fields. The relative contribution from the VSGs to the 70 μm intensity can be up to 50%.
Key words: ISM: general / dust, extinction / infrared: ISM / methods: data analysis
Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Reduced Herschel maps (FITS) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A111
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.