Issue |
A&A
Volume 563, March 2014
|
|
---|---|---|
Article Number | A4 | |
Number of page(s) | 5 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201323300 | |
Published online | 26 February 2014 |
Research Note
New determination of the HCN profile in the stratosphere of Neptune from millimeter-wave spectroscopy
1
Max-Planck-Institut für Sonnensystemforschung,
Justus-von-Liebig-Weg 3,
37077
Göttingen,
Germany
e-mail:
rezac@mps.mpg.de
2
Department of Astrophysical Sciences, Princeton
University, Princeton
NJ
08544,
USA
3
Univ. Bordeaux, LAB, UMR 5804, 33270
Floirac,
France
4
CNRS, LAB, UMR 5804, 32270
Floirac,
France
Received: 20 December 2013
Accepted: 31 January 2014
Context. Periodic monitoring of the atmospheric composition is the cornerstone of planetary atmospheric science. It reveals temporal and/or spatial variations. Ground-based observations of rotational lines from the (sub-)millimeter wavelength range is a suitable method to obtain the mean HCN profile in Neptune’s startosphere.
Aims. We aimed at deriving new constraints on the disk-averaged HCN stratospheric profile and abundance. The 14-year gap between the last published observations and ours of HCN in Neptune can be used to constrain any possible time variation of this main nitrogen-bearing molecule at the probed altitudes. This temporal variation could additionally reveal, albeit indirectly, the dominant process responsible for the origin of the nitrogen compoundsin the stratosphere of Neptune.
Methods. Spectra of the HCN (J = 3–2) line at 265.886 GHz were obtained with the 1.3 mm receiver of the Submillimeter Telescope (SMT) at the Arizona Radio Observatory (ARO) using several backends simultaneously. The spectral resolution of the analyzed datasets was 1 MHz and 250 kHz, providing a signal-to-noise ratio of 20 and 11, respectively. Pre-processing of the spectra involved baseline removal and de-noising using the empirical mode decomposition technique. The spectra were then inverted using a line-by-line radiative transfer model to obtain the vertical profile of HCN between 2 mbar to 10 μbar and derive the column density.
Results. The retrieved mean stratospheric HCN mole fraction is (1.3 ± 0.6) × 10-9 above 0.5 millibar, corresponding to a column density of 2.2 × 1014 molecules cm-2. The data are consistent with a pronounced HCN decrease below the 0.6 mbar level, which agrees with previous findings.
Key words: submillimeter: planetary systems / planets and satellites: atmospheres / planets and satellites: composition
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.