Issue |
A&A
Volume 562, February 2014
|
|
---|---|---|
Article Number | A33 | |
Number of page(s) | 6 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201322297 | |
Published online | 05 February 2014 |
The first submillimeter observation of CO in the stratosphere of Uranus⋆
1 Univ. Bordeaux, LAB, UMR 5804, 33270 Floirac, France
e-mail: cavalie@obs.u-bordeaux1.fr
2 CNRS, LAB, UMR 5804, 33270 Floirac, France
3 LESIA – Observatoire de Paris, CNRS, Université Paris 06, Université Paris-Diderot, Meudon, France
4 Max Planck Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany
5 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Leuven, Belgium
6 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
7 Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
Received: 17 July 2013
Accepted: 7 November 2013
Context. Carbon monoxide (CO) has been detected in all giant planets and its origin is both internal and external in Jupiter and Neptune. Despite its first detection in Uranus a decade ago, the magnitude of its internal and external sources remains unconstrained.
Aims. We targeted CO lines in Uranus in the submillimeter range to constrain its origin.
Methods. We recorded the disk-averaged spectrum of Uranus with very high spectral resolution at the frequencies of CO rotational lines in the submillimeter range in 2011−2012. We used empirical and diffusion models of the atmosphere of Uranus to constrain the origin of CO. We also used a thermochemical model of its troposphere to derive an upper limit on the oxygen-to-hydrogen (O/H) ratio in the deep atmosphere of Uranus.
Results. We have detected the CO(8−7) rotational line for the first time with Herschel-HIFI. Both empirical and diffusion models results show that CO has an external origin. An empirical profile in which CO is constant above the 100 mbar level with a mole fraction of 7.1−9.0 × 10-9, depending on the adopted stratospheric thermal structure, reproduces the data. Sporadic and steady source models cannot be differentiated with our data. Taking the internal source model upper limit of a mole fraction of 2.1 × 10-9 we find, based on our thermochemical computations, that the deep O/H ratio of Uranus is less than 500 times solar.
Conclusions. Our work shows that the average mole fraction of CO decreases from the stratosphere to the troposphere and thus strongly advocates for an external source of CO in Uranus. Photochemical modeling of oxygen species in the atmosphere of Uranus and more sensitive observations are needed to reveal the nature of the external source.
Key words: planets and satellites: individual: Uranus / planets and satellites: atmospheres / submillimeter: planetary systems
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.