Issue |
A&A
Volume 561, January 2014
|
|
---|---|---|
Article Number | A80 | |
Number of page(s) | 9 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201322285 | |
Published online | 03 January 2014 |
Angular correlation of the cosmic microwave background in the Rh = ct Universe
Department of Physics, The Applied Math Program, and Department of
AstronomyThe University of Arizona,
Tucson,
Arizona,
85721
USA
e-mail:
fmelia@email.arizona.edu
Received:
15
July
2013
Accepted:
5
December
2013
Context. The emergence of several unexpected large-scale features in the cosmic microwave background (CMB) has pointed to possible new physics driving the origin of density fluctuations in the early Universe and their evolution into the large-scale structure we see today.
Aims. In this paper, we focus our attention on the possible absence of angular correlation in the CMB anisotropies at angles larger than ~60°, and consider whether this feature may be the signature of fluctuations expected in the Rh = ct Universe.
Methods. We calculate the CMB angular correlation function for a fluctuation spectrum expected from growth in a Universe whose dynamics is constrained by the equation-of-state p = −ρ/3, where p and ρ are the total pressure and density, respectively.
Results. We find that, though the disparity between the predictions of ΛCDM and the WMAP sky may be due to cosmic variance, it may also be due to an absence of inflation. The classic horizon problem does not exist in the Rh = ct Universe, so a period of exponential growth was not necessary in this cosmology in order to account for the general uniformity of the CMB (save for the aforementioned tiny fluctuations of 1 part in 100 000 in the WMAP relic signal).
Conclusions. We show that the Rh = ct Universe without inflation can account for the apparent absence in CMB angular correlation at angles θ ≳ 60° without invoking cosmic variance, providing additional motivation for pursuing this cosmology as a viable description of nature.
Key words: cosmic background radiation / cosmological parameters / cosmology: observations / cosmology: theory / dark matter / gravitation
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.