Issue |
A&A
Volume 559, November 2013
|
|
---|---|---|
Article Number | A38 | |
Number of page(s) | 10 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201322134 | |
Published online | 01 November 2013 |
The expansion of massive young star clusters – observation meets theory ⋆
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
e-mail: spfalzner@mpifr.de
Received: 25 June 2013
Accepted: 29 August 2013
Context. Most stars form as part of a star cluster. The most massive clusters in the Milky Way exist in two groups – loose and compact clusters – with significantly different sizes at the end of the star formation process. After their formation, both types of clusters expand up to a factor 10–20 within the first 20 Myr of their development. Gas expulsion at the end of the star formation process is usually regarded as the only possible process that can lead to such an expansion during this early period of development.
Aims. We investigate the effect of gas expulsion by a direct comparison between numerical models and observed clusters and concentrate on clusters with masses >103M⊙. For these clusters the initial conditions before gas expulsion, the characteristic cluster development, its dependence on cluster mass, and the star formation efficiency (SFE) are investigated.
Methods. We performed N-body simulations of the cluster expansion process after gas expulsion and compared the results with observations.
Results. We find that the expansion processes of the observed loose and compact massive clusters are driven by completely different physical processes. As expected, the expansion of loose massive clusters is largely driven by the gas loss due to the low SFE of ~30%. One new revelation is that all the observed massive clusters of this group seem to have a very similar size of 1–3 pc at the onset of expansion. It is demonstrated that compact clusters have a much higher effective SFE of 60–70% and are as a result much less affected by gas expulsion. Their expansion is mainly driven by stellar ejections caused by interactions between the cluster members. The reason ejections are so efficient in driving cluster expansion is that they occur dominantly from the cluster centre and over an extended period of time. During the first 10 Myr the internal dynamics of loose and compact clusters thus differ fundamentally.
Key words: galaxies: star clusters: general / stars: kinematics and dynamics / open clusters and associations: general
Appendices are available in electronic form at http://www.aanda.org
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.