Issue |
A&A
Volume 557, September 2013
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 31 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201321784 | |
Published online | 11 September 2013 |
Catching the radio flare in CTA 102
III. Core-shift and spectral analysis⋆
1
Max-Planck-Institut für Radioastronomie,
Auf dem Hügel 69,
53121
Bonn,
Germany
e-mail:
cfromm@mpifr.de
2
Observatori Astronòmic, Universitat de València,
Apartat de Correus
22085, 46071
València,
Spain
3
Departament d’Astronomia i Astrofísica, Universitat de
València, Dr. Moliner 50, 46100
Burjassot, València, Spain
4
Institut für Theoretische Physik und Astrophysik, Universität
Würzburg, Am
Hubland, 97074
Würzburg,
Germany
Received:
26
April
2013
Accepted:
24
June
2013
Context. The temporal and spatial spectral evolution of the jets of active galactic nuclei (AGN) can be studied with multi-frequency, multi-epoch very-long-baseline-interferometry (VLBI) observations. The combination of both morphological (kinematical) and spectral parameters can be used to derive source-intrinsic physical properties, such as the magnetic field and the nonthermal particle density. Such a study is of special interest during the high states of activity in AGNs, since VLBI observations can provide estimates of the location of the flaring site. Furthermore, we can trace the temporal variations in the source-intrinsic parameters during the flare, which may reflect the interaction between the underlying plasma and a traveling shock wave. The source CTA 102 exhibited such a radio flare around 2006.
Aims. In the first two papers of this series (Papers I and II), we analyzed the single-dish light curves and the VLBI kinematics of the blazar CTA 102 and suggested a shock-shock interaction between a traveling and a standing shock wave as a possible scenario to explain the observed evolution of the component associated to the 2006 flare. In this paper we investigate the core shift and spectral evolution to test our hypothesis of a shock-shock interaction.
Methods. We used eight multi-frequency Very Long Baseline Array (VLBA) observations to analyze the temporal and spatial evolution of the spectral parameters during the flare. We observed CTA 102 between May 2005 and April 2007 using the VLBA at six different frequencies spanning from 2 GHz up to 86 GHz. After the calibrated VLBA images were corrected for opacity, we performed a detailed spectral analysis. We developed methods for aligning the images and extracting the uncertainties in the spectral parameters. From the derived values we estimated the magnetic field and the density of the relativistic particles and combined those values with the kinematical changes provided from the long-term VLBA monitoring (Paper II) and single-dish measurements (Paper I).
Results. The detailed analysis of the opacity shift reveals that the position of the jet core is proportional to ν-1 with some temporal variations. The value suggests possible equipartition between magnetic field energy and particle kinetic energy densities at the most compact regions. From the variation in the physical parameters we deduced that the 2006 flare in CTA 102 is connected to the ejection of a new traveling feature (tej = 2005.9) and to the interaction between this shock wave and a stationary structure (interpreted as a recollimation shock) around 0.1 mas from the core (de-projected 18 pc at a viewing angle of ϑ = 2.6°). The source kinematics, together with the spectral and structural variations, can be described by helical motions in an overpressured jet.
Key words: galaxies: active / radiation mechanisms: non-thermal / galaxies: clusters: individual: CTA 102 / galaxies: jets / radio continuum: galaxies
Appendices are available in electronic form at http://www.aanda.org
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.