Issue |
A&A
Volume 553, May 2013
|
|
---|---|---|
Article Number | A131 | |
Number of page(s) | 5 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201321189 | |
Published online | 24 May 2013 |
Three-dimensional orbits of the triple-O stellar system HD 150136⋆
1 Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam, The Netherlands
e-mail: h.sana@uva.nl
2 UJF−Grenoble 1/CNRS−INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, France
3 Département d’Astrophysique, Géophysique et Océanographie, Université de Liège, Allée du 6 Août 17, 4000 Liège, Belgium
Received: 30 January 2013
Accepted: 3 April 2013
Context. HD 150136 is a triple hierarchical system and a non-thermal radio emitter. It is formed by an O3−3.5 V + O5.5−6 V close binary and a more distant O6.5−7 V tertiary. So far, only the inner orbital properties have been reliably constrained.
Aims. To quantitatively understand the non-thermal emission process, accurate knowledge of the physical and orbital properties of the object is crucial. Here, we aim to investigate the orbital properties of the wide system and to constrain the inclinations of the inner and outer binaries, and with these the absolute masses of the system components.
Methods. We used the PIONIER combiner at the Very Large Telescope Interferometer to obtain the very first interferometric measurements of HD 150136. We combined the interferometric observations with new and existing high-resolution spectroscopic data to derive the orbital solution of the outer companion in the three-dimensional space.
Results. The wide system is clearly resolved by PIONIER, with a projected separation on the plane of the sky of about 9 milli-arcsec. The best-fit orbital period, eccentricity, and inclination are 8.2 yr, 0.73, and 108°. We constrain the masses of the three stars of the system to 63 ± 10, 40 ± 6, and 33 ± 12 M⊙ for the O3−3.5 V, O5.5−6 V, and O6.5−7 V components.
Conclusions. The dynamical masses agree within errors with the evolutionary masses of the components. Future interferometric and spectroscopic monitoring of HD 150136 should allow one to reduce the uncertainties to a few per cent only and to accurately constrain the distance to the system. This makes HD 150136 an ideal system to quantitatively test evolutionary models of high-mass stars as well as the physics of non-thermal processes occurring in O-type systems.
Key words: binaries: close / binaries: spectroscopic / radiation mechanisms: non-thermal / stars: early-type / stars: fundamental parameters / stars: massive
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.