Issue |
A&A
Volume 549, January 2013
|
|
---|---|---|
Article Number | A74 | |
Number of page(s) | 15 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201220211 | |
Published online | 21 December 2012 |
Seismic diagnostics for transport of angular momentum in stars
I. Rotational splittings from the pre-main sequence to the red-giant branch
1
Georg-August-Universität Göttingen, Institut für Astrophysik,
Friedrich-Hund-Platz 1,
37077
Göttingen, Germany
e-mail: jmarques@astro.physik.uni-goettingen.de
2
Observatoire de Paris, LESIA, CNRS UMR 8109,
92195
Meudon,
France
3
Observatoire de Paris, GEPI, CNRS UMR 8111,
92195
Meudon,
France
4
Institut de Physique de Rennes, Université de Rennes 1, CNRS UMR
6251, 35042
Rennes,
France
5
Département de Physique, Université de Montréal,
Montréal PQ
H3C 3J7,
Canada
6
LUPM – UM2/CNRS UMR 5299, Place Eugène Bataillon cc72, 34095
Montpellier,
France
7
Institut d’Astrophysique, Géophysique et Océanographie de
l’Université de Liège, Allée du 6
Août 17, 4000
Liège,
Belgium
8
Departamento de Astrofísica, Centro de Astrobiología
(INTA-CSIC), PO Box
78, 28691
Villanueva de la Cañada,
Madrid,
Spain
9
Laboratoire Lagrange, UMR 7293, CNRS, Observatoire de la Côte
d’Azur, Université de Nice Sophia-Antipolis, Nice, France
10
Laboratoire AIM Paris-Saclay, CEA/DSM-CNRS-Université Paris
Diderot, IRFU/SAp Centre de
Saclay, 91191
Gif-sur-Yvette,
France
11
Observatoire de Paris, LUTH, CNRS UMR 8102,
92195
Meudon,
France
Received:
13
August
2012
Accepted:
15
October
2012
Context. Rotational splittings are currently measured for several main sequence stars and a large number of red giants with the space mission Kepler. This will provide stringent constraints on rotation profiles.
Aims. Our aim is to obtain seismic constraints on the internal transport and surface loss of the angular momentum of oscillating solar-like stars. To this end, we study the evolution of rotational splittings from the pre-main sequence to the red-giant branch for stochastically excited oscillation modes.
Methods. We modified the evolutionary code CESAM2K to take rotationally induced transport in radiative zones into account. Linear rotational splittings were computed for a sequence of 1.3 M⊙ models. Rotation profiles were derived from our evolutionary models and eigenfunctions from linear adiabatic oscillation calculations.
Results. We find that transport by meridional circulation and shear turbulence yields far too high a core rotation rate for red-giant models compared with recent seismic observations. We discuss several uncertainties in the physical description of stars that could have an impact on the rotation profiles. For instance, we find that the Goldreich-Schubert-Fricke instability does not extract enough angular momentum from the core to account for the discrepancy. In contrast, an increase of the horizontal turbulent viscosity by 2 orders of magnitude is able to significantly decrease the central rotation rate on the red-giant branch.
Conclusions. Our results indicate that it is possible that the prescription for the horizontal turbulent viscosity largely underestimates its actual value or else a mechanism not included in current stellar models of low mass stars is needed to slow down the rotation in the radiative core of red-giant stars.
Key words: stars: evolution / stars: interiors / stars: rotation / stars: oscillations
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.