Issue |
A&A
Volume 549, January 2013
|
|
---|---|---|
Article Number | A112 | |
Number of page(s) | 9 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201219522 | |
Published online | 08 January 2013 |
Why circumstellar disks are so faint in scattered light: the case of HD 100546
1
Astronomical Institute “Anton Pannekoek”, University of
Amsterdam, PO Box
94249, 1090 GE
Amsterdam, The
Netherlands
e-mail: mulders@uva.nl
2
SRON Netherlands Institute for Space Research,
PO Box 800, 9700 AV
Groningen, The
Netherlands
3
Department of Astrophysics/IMAPP, Radboud University
Nijmegen, PO Box
9010
6500 GL
Nijmegen, The
Netherlands
4
Space Telescope Science Institute, Baltimore, MD
21218,
USA
5
Steward Observatory, The University of Arizona,
933 North Cherry Avenue,
Tucson, AZ
85721,
USA
Received: 2 May 2012
Accepted: 19 November 2012
Context. Scattered light images of circumstellar disks play an important role in characterizing the planet forming environments around young stars. The characteristic size of the scattering dust grains can be estimated from the observed brightness asymmetry between the near and far side of the disk, for example using standard Mie theory. Such models, however, often overpredict the brightness of the disk by one or two orders of magnitude, and have difficulty explaining very red disk colors.
Aims. We aim to develop a dust model that simultaneously explains the observed disk surface brightness, colors, and asymmetry in scattered light, focusing on constraining grain sizes.
Methods. We use the 2D radiative transfer code MCMax with anisotropic scattering to explore the effects of grain size on synthetic scattered light images of circumstellar disks. We compare the results with surface brightness profiles of the protoplanetary disk HD 100546 in scattered light at wavelengths from 0.4 to 2.2 microns.
Results. We find that extreme forward scattering by micron-sized particles lowers the effective dust albedo and creates a faint, red disk that appears only slightly forward scattering. For the outer (≳100 AU) disk of HD 100546 we derive a minimum grain size of 2.5 microns, likely present in the form of aggregates. Intermediate-sized grains are too bright, whereas smaller grains are faint and scatter more isotropically, but also produce disk colors that are too blue.
Conclusions. Observed surface brightness asymmetries alone are not sufficient to constrain the grain size in circumstellar disks. Additional information, such as the brightness and colors of the disk, are needed to provide additional constraints.
Key words: scattering / radiative transfer / circumstellar matter / stars: individual: HD 100546 / protoplanetary disks
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.