Issue |
A&A
Volume 548, December 2012
|
|
---|---|---|
Article Number | A35 | |
Number of page(s) | 12 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201219335 | |
Published online | 15 November 2012 |
Solar Fe abundance and magnetic fields
Towards a consistent reference metallicity
1
Instituto de Astrofísica de Canarias (IAC),
Calle vía Láctea s/n, 38200
La Laguna, Tenerife,
Spain
e-mail: damian@iac.es; khomenko@iac.es; fmi@iac.es
2
Departamento de Astrofísica, Universidad de La Laguna
(ULL), 38205 La
Laguna, Tenerife,
Spain
3
Niels Bohr Institutet (NBI), Københavns Universitet,
Blegdamsvej 17, 2100
København Ø,
Denmark
e-mail: aake@nbi.dk
4
Centre for Star and Planet Formation (STARPLAN), Københavns
Universitet, Øster Voldgade
5-7, 1350
København Ø,
Denmark
Received: 3 April 2012
Accepted: 20 August 2012
Aims. We investigate the impact on Fe abundance determination of including magnetic flux in series of 3D radiation-magnetohydrodynamics (MHD) simulations of solar convection, which we used to synthesize spectral intensity profiles corresponding to disc centre.
Methods. A differential approach is used to quantify the changes in theoretical equivalent width of a set of 28 iron spectral lines spanning a wide range in wavelength, excitation potential, oscillator strength, Landé factor, and formation height. The lines were computed in local thermodynamic equilibrium (LTE) using the spectral synthesis code LILIA. We used input magnetoconvection snapshots covering 50 min of solar evolution and belonging to series having an average vertical magnetic flux density of ⟨ Bvert ⟩ = 0,50,100, and 200 G. For the relevant calculations we used the Copenhagen Stagger code.
Results. The presence of magnetic fields causes both a direct (Zeeman-broadening) effect on spectral lines with non-zero Landé factor and an indirect effect on temperature-sensitive lines via a change in the photospheric T − τ stratification. The corresponding correction in the estimated atomic abundance ranges from a few hundredths of a dex up to |Δlog ϵ(Fe)⊙| ~ 0.15 dex, depending on the spectral line and on the amount of average magnetic flux within the range of values we considered. The Zeeman-broadening effect gains relatively more importance in the IR. The largest modification to previous solar abundance determinations based on visible spectral lines is instead due to the indirect effect, i.e., the line-weakening caused by a warmer stratification as seen on an optical depth scale. Our results indicate that the average solar iron abundance obtained when using magnetoconvection models can be ~ 0.03–0.11 dex higher than when using the simpler hydrodynamics (HD) convection approach.
Conclusions. We demonstrate that accounting for magnetic flux is important in state-of-the-art solar photospheric abundance determinations based on 3D convection simulations.
Key words: magnetohydrodynamics (MHD) / radiative transfer / line: formation / Sun: abundances / Sun: granulation / Sun: photosphere
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.