Issue |
A&A
Volume 546, October 2012
|
|
---|---|---|
Article Number | A88 | |
Number of page(s) | 24 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201219016 | |
Published online | 10 October 2012 |
Nonthermal X-rays from low-energy cosmic rays: application to the 6.4 keV line emission from the Arches cluster region ⋆
1 Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3/CNRS and Univ Paris-Sud, 91405 Orsay, France
e-mail: Vincent.Tatischeff@csnsm.in2p3.fr
2 Service d’Astrophysique (SAp)/IRFU/DSM/CEA Saclay, Bt. 709, 91191 Gif-sur-Yvette Cedex, Laboratoire AIM, CEA-IRFU/CNRS/Univ Paris Diderot, CEA Saclay, 91191 Gif-sur-Yvette, France
3 Laboratoire d’Annecy le Vieux de Physique des Particules, Univ. de Savoie, CNRS, BP 110, 74941 Annecy-le-Vieux Cedex, France
Received: 10 February 2012
Accepted: 8 August 2012
Context. The iron Kα line at 6.4 keV provides a valuable spectral diagnostic in several fields of X-ray astronomy. The line often results from the reprocessing of external hard X-rays by a neutral or low-ionized medium, but it can also be excited by impacts of low-energy cosmic rays.
Aims. This paper aims to provide signatures allowing identification of radiation from low-energy cosmic rays in X-ray spectra showing the 6.4 keV Fe Kα line.
Methods. We study in detail the production of nonthermal line and continuum X-rays by interaction of accelerated electrons and ions with a neutral ambient gas. Corresponding models are then applied to XMM-Newton observations of the X-ray emission emanating from the Arches cluster region near the Galactic center.
Results. Bright 6.4 keV Fe line structures are observed around the Arches cluster. This emission is very likely produced by cosmic rays. We find that it can result from the bombardment of molecular gas by energetic ions, but probably not by accelerated electrons. Using a model of X-ray production by cosmic-ray ions, we obtain a best-fit metallicity of the ambient medium of 1.7 ± 0.2 times the solar metallicity. A large flux of low-energy cosmic ray ions could be produced in the ongoing supersonic collision between the star cluster and an adjacent molecular cloud. We find that a particle acceleration efficiency in the resulting shock system of a few percent would give enough power in the cosmic rays to explain the luminosity of the nonthermal X-ray emission. Depending on the unknown shape of the kinetic energy distribution of the fast ions above ~1 GeV nucleon-1, the Arches cluster region may be a source of high-energy γ-rays detectable with the Fermi Gamma-ray Space Telescope.
Conclusions. At present, the X-ray emission prominent in the 6.4 keV Fe line emanating from the Arches cluster region probably offers the best available signature for a source of low-energy hadronic cosmic rays in the Galaxy.
Key words: cosmic rays / ISM: abundances / Galaxy: center / X-rays: ISM
Appendices are available in electronic form at http://www.aanda.org
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.