Issue |
A&A
Volume 543, July 2012
|
|
---|---|---|
Article Number | A90 | |
Number of page(s) | 8 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201219280 | |
Published online | 03 July 2012 |
The role of radiative losses in the late evolution of pulse-heated coronal loops/strands
1
Dipartimento di FisicaUniversità di Palermo,
Piazza del Parlamento 1,
90134
Palermo,
Italy
e-mail: reale@astropa.unipa.it
2
INAF – Osservatorio Astronomico di Palermo, Piazza del Parlamento
1, 90134
Palermo,
Italy
3
Department of Atmospheric, Oceanic and Space Sciences, University
of Michigan, Ann
Arbor, MI
48109,
USA
Received:
23
March
2012
Accepted:
19
May
2012
Context. Radiative losses from optically thin plasma are an important ingredient in modeling confined plasma in the solar corona. Spectral models are continuously updated to include the emission from more spectral lines, with significant effects on radiative losses, especially around 1 MK.
Aims. We investigate the effect of changes to the radiative-loss temperature dependence caused by upgrading spectral codes on the predictions obtained when modeling confined plasma in the solar corona.
Methods. We revisit the hydrodynamic simulation of a pulse-heated loop strand by comparing results obtained using an old and a recent radiative-loss function.
Results. We find that significant changes occur in the plasma evolution during the late phases of plasma cooling: when the more recent radiative-loss curve is used, the plasma cooling rate indeed increases significantly when temperatures reach 1–2 MK. This more rapid cooling occurs when the plasma density is higher than a threshold value, which in impulsive heating models leads to the loop plasma becoming overdense. This rapid cooling has the effect of steepening the slope in the emission measure distribution of coronal plasmas with temperature, at temperatures lower than ~2 MK, and of reducing the visibility of warm (1 MK) loops.
Conclusions. The effects of changes to the radiative-loss curves can be important when modeling the late phases of the evolution of pulse-heated coronal loops, and, in general, of thermally unstable optically thin plasmas.
Key words: Sun: X-rays, gamma rays / Sun: corona / Sun: UV radiation / Sun: activity / radiation mechanisms: thermal / hydrodynamics
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.