Issue |
A&A
Volume 538, February 2012
|
|
---|---|---|
Article Number | A39 | |
Number of page(s) | 19 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201117458 | |
Published online | 30 January 2012 |
A quantitative study of O stars in NGC 2244 and the Monoceros OB2 association⋆
1 LUPM–UMR 5299, CNRS & Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
e-mail: fabrice.martins@univ-montp2.fr
2 Institut d’Astrophysique et de Géophysique, Université de Liège, Bât. B5C, Allée du 6 Août 17, 4000 Liége, Belgium
3 Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260, USA
Received: 10 June 2011
Accepted: 13 October 2011
Aims. Our goal is to determine the stellar and wind properties of seven O stars in the cluster NGC 2244 and three O stars in the OB association Mon OB2. These properties give us insight into the mass loss rates of O stars. They allow us to both check the validity of rotational mixing in massive stars and to better understand the effects of the ionizing flux and wind mechanical energy release on the surrounding interstellar medium and its influence on triggered star formation.
Methods. We collected optical and UV spectra of the target stars that we analyzed by means of atmosphere models computed with the code CMFGEN. The spectra of binary stars were disentangled and the components studied separately.
Results. All stars have an evolutionary age less than 5 million years, with the most massive stars being among the youngest. Nitrogen surface abundances show no clear relation with projected rotational velocities. Binaries and single stars show the same range of enrichment. This is attributed to the youth and/or wide separation of the binary systems in which the components have not (yet) experienced strong interaction. A clear trend toward greater enrichment in higher luminosity objects is observed, consistent with what evolutionary models with rotation predict for a population of O stars at any given age. We confirm the weakness of winds in late O dwarfs. In general, mass loss rates derived from UV lines are lower than mass loss rates obtained from Hα. The UV mass loss rates are even lower than the single-line driving limit in the latest type dwarfs. These issues are discussed in the context of the structure of massive stars winds. The evolutionary and spectroscopic masses are in agreement above 25 M⊙, but the uncertainties are large. Below this threshold, the few late-type O stars studied here indicate that the mass discrepancy still seems to hold.
Key words: stars: fundamental parameters / stars: winds, outflows / stars: early-type / Hii regions
Appendix A is available in electronic form at http://www.aanda.org
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.