Issue |
A&A
Volume 528, April 2011
|
|
---|---|---|
Article Number | A120 | |
Number of page(s) | 18 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201015768 | |
Published online | 11 March 2011 |
Radiative hydrodynamic simulations of red supergiant stars
III. Spectro-photocentric variability, photometric variability, and consequences on Gaia measurements
1
Institut d’Astronomie et d’Astrophysique, Université Libre de
Bruxelles,
CP. 226, Boulevard du Triomphe,
1050
Bruxelles,
Belgium
e-mail: achiavas@ulb.ac.be
2
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317,
85741
Garching b. München,
Germany
3
Department of Astronomy, University of Vienna,
Türkenschanzstrasse 17,
1180
Wien,
Austria
4
GEPI, Observatoire de Paris, CNRS, Université Paris Diderot,
Place Jules Janssen,
92190
Meudon,
France
5
Université de Lyon, 69003 Lyon; École Normale Supérieure de Lyon,
46 allée d’Italie, 69007 Lyon; CNRS, UMR 5574, Centre de Recherche Astrophysique de
Lyon; Université Lyon 1, 69622
Villeurbanne,
France
6
Department of Physics and Astronomy, Division of Astronomy and
Space Physics, Uppsala University, Box 515, S-751
20
Uppsala,
Sweden
7
Istituto Nazionale di Astrofisica, Osservatorio Astronomico di
Capodimonte, via Moiariello 16, 80131
Naples,
Italy
8
Zentrum für Astronomie der Universität Heidelberg,
Landessternwarte, Königstuhl
12, 69117
Heidelberg,
Germany
9
UMR 6525 H. Fizeau, Univ. Nice Sophia Antipolis, CNRS,
Observatoire de la Côte d’Azur, Av.
Copernic, 06130
Grasse,
France
Received:
16
September
2010
Accepted:
17
December
2010
Context. It has been shown that convection in red supergiant stars (RSG) gives rise to large granules that cause surface inhomogeneities and shock waves in the photosphere. The resulting motion of the photocentre (on time scales ranging from months to years) could possibly have adverse effects on the parallax determination with Gaia.
Aims. We explore the impact of the granulation on the photocentric and photometric variability. We quantify these effects in order to better characterise the error that could possibly alter the parallax.
Methods. We use 3D radiative-hydrodynamics (RHD) simulations of convection with CO5BOLD and the post-processing radiative transfer code Optim3D to compute intensity maps and spectra in the Gaia G band [325–1030 nm].
Results. We provide astrometric and photometric predictions from 3D simulations of RSGs that are used to evaluate the possible degradation of the astrometric parameters of evolved stars derived by Gaia. We show in particular from RHD simulations that a supergiant like Betelgeuse exhibits a photocentric noise characterised by a standard deviation of the order of 0.1 AU. The number of bright giant and supergiant stars whose Gaia parallaxes will be altered by the photocentric noise ranges from a few tens to several thousands, depending on the poorly known relation between the size of the convective cells and the atmospheric pressure scale height of supergiants, and to a lower extent, on the adopted prescription for galactic extinction. In the worst situation, the degradation of the astrometric fit caused by this photocentric noise will be noticeable up to about 5 kpc for the brightest supergiants. Moreover, parallaxes of Betelgeuse-like supergiants are affected by an error of the order of a few percents. We also show that the photocentric noise, as predicted by the 3D simulation, does account for a substantial part of the supplementary “cosmic noise” that affects Hipparcos measurements of Betelgeuse and Antares.
Key words: stars: atmospheres / supergiants / astrometry / parallaxes / hydrodynamics / stars: individual: Betelgeuse
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.