Issue |
A&A
Volume 528, April 2011
|
|
---|---|---|
Article Number | A66 | |
Number of page(s) | 8 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201015603 | |
Published online | 03 March 2011 |
Long-period thermal oscillations in superfluid millisecond pulsars
Departamento de Astronomía y AstrofísicaPontificia Universidad Católica de Chile, Casilla 306 Santiago 22, Chile
e-mail: cpetrovi@astro.princeton.edu
Received: 18 August 2010
Accepted: 29 January 2011
Context. In previous papers, we have shown that, as the rotation of a neutron star slows down, it will be internally heated as a consequence of the progressively changing mix of particles (rotochemical heating). In previously studied cases (non-superfluid neutron stars or superfluid stars with only modified Urca reactions), this leads to a quasi-steady state in which the star radiates thermal photons for a long time, possibly accounting for the ultraviolet radiation observed from the millisecond pulsar J0437-4715.
Aims. For the first time, we explore the phenomenology of rotochemical heating with direct Urca reactions and uniform and isotropic superfluid energy gaps of different sizes.
Methods. We first do exploratory work by integrating the thermal and chemical evolution equations numerically for different energy gaps, which uncovers a rich phenomenology of stable and unstable solutions. To understand these, we perform a stability analysis around the quasi-steady state, identifying the characteristic times of growing, decaying, and oscillating solutions.
Results. For small gaps, the phenomenology is similar to the previously studied cases, in the sense that the solutions quickly converge to a quasi-steady state. For large gaps ( ≳ 0.05 MeV), these solutions become unstable, leading to a limit-cycle behavior of periodicity ~106−7 yr, in which the star is hot (Ts ≳ 105 K) for a small fraction of the cycle (~5–20%), and cold for a longer time.
Key words: stars: neutron / dense matter / stars: rotation / pulsars: general / pulsars: individual: PSR J0437-4715
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.