Issue |
A&A
Volume 524, December 2010
|
|
---|---|---|
Article Number | A32 | |
Number of page(s) | 14 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201015332 | |
Published online | 22 November 2010 |
Searching for chameleon-like scalar fields with the ammonia method⋆,⋆⋆
II. Mapping of cold molecular cores in NH3 and HC3N lines
1
INAF - Osservatorio Astronomico di Trieste,
via G. B. Tiepolo 11
34131
Trieste
Italy
e-mail: lev@astro.ioffe.rssi.ru
2
Key Laboratory for Research in Galaxies and Cosmology, Shanghai
Astronomical Observatory, CAS, 80
Nandan Road, Shanghai
200030, PR
China
3
Ioffe Physical-Technical Institute, Polytekhnicheskaya Str. 26, 194021
St. Petersburg,
Russia
4
Institute for Applied Physics, Uljanov Str. 46, 603950
Nizhny Novgorod,
Russia
5
Max-Planck-Institut für Radioastronomie,
Auf dem Hügel 69,
53121
Bonn,
Germany
6
Hamburger Sternwarte, Universität Hamburg,
Gojenbergsweg 112,
21029
Hamburg,
Germany
7
Petersburg Nuclear Physics Institute,
188300
Gatchina,
Russia
Received: 4 July 2010
Accepted: 5 August 2010
Context. In our previous work we found a statistically significant offset ΔV ≈ 27 m s-1 between the radial velocities of the HC3N J = 2−1 and NH3 (J,K) = (1,1) transitions observed in molecular cores from the Milky Way. This may indicate that the electron-to-proton mass ratio, μ ≡ me/mp, increases by ~3 × 10-8 when measured under interstellar conditions with matter densities of more than 10 orders of magnitude lower than with laboratory (terrestrial) environments.
Aims. We map four molecular cores L1498, L1512, L1517, and L1400K selected from our previous sample to estimate systematic effects in ΔV due to possible velocity gradients or other sources across the cloud and to check the reproducibility of the velocity offsets on the year-to-year time base.
Methods. We use the ammonia method, which involves observations of inversion lines of NH3 complemented by rotational lines of other molecular species and allows us to test changes in μ caused by a higher sensitivity of the inversion frequencies to the μ-variation than with the rotational frequencies.
Results. We find that in two cores L1498 and L1512 the NH3 (1, 1) and HC3N (2–1) transitions closely trace the same material and show an offset of ΔV ≡ Vlsr(HC3N) – Vlsr(NH3) = 26.9 ± 1.2stat ± 3.0sys m s-1 throughout the entire clouds. The offsets measured in L1517B and L1400K are 46.9 ± 3.3stat ± 3.0sys m s-1 and 8.5 ± 3.4stat ± 3.0sys m s-1, respectively, and are, probably, subject to Doppler shifts due to spatial segregation of HC3N versus NH3. We also determine frequency shifts caused by external electric and magnetic fields and by the cosmic black body radiation-induced Stark effect and find that they are less than 1 m s-1.
Conclusions. The measured velocity offset in L1498 and L1512, when interpreted in terms of Δμ/μ ≡ (μobs − μlab)/μlab, gives Δμ/μ = (26 ± 1stat ± 3sys) × 10-9. Although this estimate is based on a limited number of sources and molecular pairs used in the ammonia method, it demonstrates a high accuracy with which the fundamental physics can be tested by means of radio observations. The non-zero signal in Δμ/μ should be further examined as larger and more accurate data sets become available.
Key words: line: profiles / ISM: molecules / radio lines: ISM / techniques: radial velocities / elementary particles
Based on observations obtained with the 100-m telescope at Effelsberg/Germany, which is operated by the Max-Planck Institut für Radioastronomie on behalf of the Max-Planck-Gesellschaft (MPG).
Tables 2–5 are only available in electronic form at http://www.aanda.org
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.