Issue |
A&A
Volume 512, March-April 2010
|
|
---|---|---|
Article Number | A44 | |
Number of page(s) | 19 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/200913007 | |
Published online | 30 March 2010 |
Searching for chameleon-like scalar fields with the ammonia method*
1
INAF - Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11,
34131 Trieste, Italy
2
Ioffe Physical - Technical Institute, Polytekhnicheskaya Str. 26, 194021 St. Petersburg, Russia e-mail: lev@astro.ioffe.rssi.ru
3
Institute for Applied Physics, Uljanov Str. 46, 603950 Nizhny Novgorod, Russia
4
Hamburger Sternwarte,
Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany
5
Max-Planck-Institut für Radioastronomie,
Auf dem Hügel 69, 53121 Bonn, Germany
6
Institute of Astronomy, The University of Tokyo, Osawa, Mitaka, Tokyo
181-0015, Japan
Received:
29
July
2009
Accepted:
18
November
2009
Aims. We probe the dependence of the electron-to-proton mass ratio, μ = me/mp, on the ambient matter density by means of radio astronomical observations.
Methods. The ammonia method, which has been proposed to explore the electron-to-proton mass ratio, is applied to nearby dark clouds
in the Milky Way.
This ratio, which is measured in different physical environments of
high (terrestrial) and low (interstellar) densities of baryonic matter is
supposed to vary in chameleon-like scalar field models, which predict
strong dependences of both masses and coupling constant on the local matter density.
High resolution spectral observations of molecular cores
in lines of NH3 (J,K) = (1,1),
N J = 2-1, and
J = 1-0 were performed at three
radio telescopes to measure the radial velocity offsets,
≡ Vrot - Vinv,
between the inversion transition of
(1,1) and the rotational transitions
of other molecules with different sensitivities
to the parameter
≡
/
.
Results. The measured values of exhibit a statistically significant velocity
offset of 23±
±
m s
. When interpreted in terms
of the electron-to-proton mass ratio variation, this infers that
= (2.2±
±
) × 10-8.
If only a conservative upper bound is considered, then the maximum
offset between ammonia and the other molecules is
≤ 30 m s
. This provides the most accurate reference point at z = 0 for
of
≤ 3×10-8.
Key words: line: profiles / ISM: molecules / radio lines: ISM / techniques: radial velocities
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.