Issue |
A&A
Volume 520, September-October 2010
|
|
---|---|---|
Article Number | A43 | |
Number of page(s) | 15 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201014903 | |
Published online | 29 September 2010 |
The effect of gas drag on the growth of protoplanets
Analytical expressions for the accretion of small bodies in laminar disks
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [ormel;klahr]@mpia-hd.mpg.de
Received:
30
April
2010
Accepted:
1
July
2010
Planetary bodies form by accretion of smaller bodies. It has been suggested that a very efficient way to grow protoplanets
is by accreting particles of size ≪km (e.g., chondrules, boulders, or fragments of larger bodies) as they can be kept dynamically
cold. We investigate the effects of gas drag on the impact radii and the accretion rates of these particles. As simplifying
assumptions we restrict our analysis to 2D settings, a gas drag law linear in velocity, and a laminar disk characterized by a smooth
(global) pressure gradient that causes particles to drift in radially. These approximations, however, enable us to cover an arbitrary
large parameter space. The framework of the circularly restricted three body problem is used to numerically integrate particle
trajectories and to derive their impact parameters. Three accretion modes can be distinguished: hyperbolic encounters,
where the 2-body gravitational focusing enhances the impact parameter; three-body encounters, where gas drag enhances the
capture probability; and settling encounters, where particles settle towards the protoplanet. An analysis of the observed
behavior is presented; and we provide a recipe to analytically calculate the impact radius, which confirms the numerical findings.
We apply our results to the sweepup of fragments by a protoplanet at a distance of 5 AU. Accretion of debris on small protoplanets
(50 km) is found to be slow, because the fragments are distributed over a rather thick layer. However, the newly found settling
mechanism, which is characterized by much larger impact radii, becomes relevant for protoplanets of ~103 km in size and
provides a much faster channel for growth.
Key words: planets and satellites: formation / protoplanetary disks / minor planets, asteroids: general
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.