Issue |
A&A
Volume 514, May 2010
|
|
---|---|---|
Article Number | L4 | |
Number of page(s) | 3 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201014716 | |
Published online | 19 May 2010 |
Letter to the Editor
Planet–planet scattering in circumstellar gas disks
1
Dipartimento di Fisica, University of Padova, via Marzolo 8, 35131 Padova, Italy e-mail: marzari@pd.infn.it
2
Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA e-mail: clement.baruteau@ucolick.org
3
Laboratoire Cassiopée, Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, BP 4229, 06304 Nice Cedex, France e-mail: Hans.Scholl@oca.eu
Received:
1
April
2010
Accepted:
24
April
2010
Context. Hydrodynamical simulations of two giant planets embedded in a gaseous disk have shown that in case of a smooth convergent migration they end up trapped into a mean motion resonance. These findings have led to the conviction that the onset of dynamical instability causing close encounters between the planets can occur only after the dissipation of the gas when the eccentricity damping is over.
Aims. We show that a system of three giant planets may undergo planet-planet scattering when the gaseous disk, with density values comparable to that of the minimum mass solar nebula, is still interacting with the planets.
Methods. The hydrodynamical code FARGO–2D–1D is used to model the evolution of the disk and planets, modified to properly handle close encounters between the massive bodies.
Results. Our simulations predict a variety of different outcomes of the scattering phase, which includes orbital exchange, planet merging and scattering of a planet in a hyperbolic orbit.
Conclusions. This implies that the final fate of a multiplanet system under the action of the disk torques is not necessarily a packed resonant configuration.
Key words: planets and satellites: formation / protoplanetary disks / planetary systems
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.