Issue |
A&A
Volume 511, February 2010
|
|
---|---|---|
Article Number | A57 | |
Number of page(s) | 25 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/20079267 | |
Published online | 10 March 2010 |
The kinematics in the pc-scale jets of AGN*
The case of S5 1803+784
1
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: sbritzen@mpifr-bonn.mpg.de
2
Landessternwarte, Königstuhl, 69117 Heidelberg, Germany
3
St. Petersburg State University, Petrodvoretz, St.-Petersburg, Russia
4
Physics Department, University College Cork, Cork City, Cork, Ireland
5
Joint Institute for VLBI in Europe, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
6
International University Bremen, Postfach 750561, 28725 Bremen, Germany
7
Astronomy Department, University of Michigan, Ann Arbor, MI 48109-1042, USA
Received:
18
December
2007
Accepted:
23
August
2008
Context. BL Lac objects show core-jet structures with features moving outwards along the jet. We present a kinematic analysis of jet component motion in the pc-scale jet of the BL Lac object S5 1803+784, which does not reveal long-term outward motion for most of the components.
Aims. S5 1803+784 shows complex kinematic phenomena; understanding these provides new insights into the emission processes in BL Lac objects and possibly into the differences between quasars and BL Lac objects.
Methods. The blazar S5 1803+784 has been studied with VLBI at ν = 1.6, 2.3, 5, 8.4, and 15 GHz between 1993.88 and 2005.68 in 26 observing runs. We (re)analyzed the data and present Gaussian model-fits. We collected the already published kinematic information for this source from the literature and re-identified the components according to the new scenario presented in this paper. Altogether, 94 epochs of observations have been investigated.
Results. A careful study of the long-term kinematics reveals a new picture for jet component motion in S5 1803+784. In contrast to previously discussed motion scenarios, we find that the jet structure within 12 mas of the core can most easily be described by the coexistence of several bright jet features that remain on the long-term at roughly constant core separations (in addition to the already known “stationary” jet component ~1.4 mas) and one faint component moving with an apparent superluminal speed (~19c, based on 3 epochs). While most of the components maintain long-term roughly constant distances from the core, we observe significant, smooth changes in their position angles. We report on an evolution of the whole jet ridge line with time over the almost 12 years of observations. The width of the jet changes periodically with a period of ~8-9 years. We find a correlation between changes in the position angle and maxima in the total flux-density light-curves. We present evidence for a geometric origin of the observed phenomena and discuss possible models.
Conclusions. We find evidence for a significantly different scenario of jet component motion in S5 1803+784 compared to the generally accepted one of outwardly moving jet components, and conclude that the observed phenomena (evolution of the jet ridge line, roughly constant component core separations but with significant position angle changes) can most easily be explained within a geometric model.
Key words: techniques: interferometric / BL Lacertae objects: individual: S5 1803+784 / radio continuum: galaxies / BL Lacertae objects: general
Figures 15 to 20 and Tables 1, 2, 7, and 8 are only available in electronic form at http://www.aanda.org
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.