Issue |
A&A
Volume 511, February 2010
|
|
---|---|---|
Article Number | A47 | |
Number of page(s) | 12 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/200913693 | |
Published online | 05 March 2010 |
Lithium abundances of halo dwarfs based on excitation temperatures
II. Non-local thermodynamic equilibrium
1
Centre for Astrophysics Research, University of Hertfordshire,
College Lane, Hatfield, AL10 9AB, UK e-mail: [a.hosford;a.e.garcia-perez;s.g.ryan]@herts.ac.uk
2
Max-Planck-Institut fr Astrophysik, Postfach 1317, 85741 Garching bei Mnchen, Germany e-mail: remo@mpa-garching.mpg.de
3
Research School of Astronomy and Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611, Australia e-mail: jen@mso.anu.edu.au
4
William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA e-mail: OLIVE@umn.edu
Received:
18
November
2009
Accepted:
4
January
2010
Context. The plateau in the abundance of 7Li in metal-poor stars was initially interpreted as an observational indicator of the primordial lithium abundance. However, this observational value is in disagreement with that deduced from calculations of Big Bang nucleosynthesis (BBN), when using the Wilkinson microwave anisotropy probe (WMAP) baryon density measurements. One of the most important factors in determining the stellar lithium abundance is the effective temperature. In a previous study by the authors, new effective temperatures (Teff) for sixteen metal-poor halo dwarfs were derived using a local thermodynamic equilibrium (LTE) description of the formation of Fe lines. This new Teff scale reinforced the discrepancy.
Aims. For six of the stars from our previous study we calculate revised temperatures using a non-local thermodynamic equilibrium (NLTE) approach. These are then used to derive a new mean primordial lithium abundance in an attempt to solve the lithium discrepancy.
Methods. Using the code MULTI we calculate NLTE corrections to the LTE abundances for the Fe i lines measured in the six stars, and determine new Teff's. We keep other physical parameters, i.e. log g, [Fe/H] and ξ, constant at the values calculated in Paper I. With the revised Teff scale we derive new Li abundances. We compare the NLTE values of Teff with the photometric temperatures of Ryan et al. (1999, ApJ, 523, 654), the infrared flux method (IRFM) temperatures of Meléndez & Ramírez (2004, ApJ, 615, L33), and the Balmer line wing temperatures of Asplund et al. (2006, ApJ, 644, 229).
Results. We find that our temperatures are hotter than both the Ryan et al. and Asplund et al. temperatures by typically ~110–160 K, but are still cooler than the temperatures of Meléndez & Ramírez by typically ~190 K. The temperatures imply a primordial Li abundance of 2.19 dex or 2.21 dex, depending on the magnitude of collisions with hydrogen in the calculations, still well below the value of 2.72 dex inferred from WMAP + BBN. We discuss the effects of collisions on trends of7Li abundances with [Fe/H] and Teff, as well as the NLTE effects on the determination of log g through ionization equilibrium, which imply a collisional scaling factor SH > 1 for collisions between Fe and H atoms.
Key words: Galaxy: halo / early Universe / stars: abundances / stars: atmospheres / line: formation / radiative transfer
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.