Issue |
A&A
Volume 511, February 2010
|
|
---|---|---|
Article Number | A74 | |
Number of page(s) | 14 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/200912898 | |
Published online | 12 March 2010 |
Strong near-infrared emission in the sub-AU disk of the Herbig Ae star HD 163296: evidence of refractory dust? *
1
INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125
Firenze, Italy e-mail: benisty@arcetri.astro.it
2
Laboratoire d'Astrophysique de Grenoble, CNRS-UJF UMR 5571, 414 rue de la
piscine, 38400 St Martin d'Hères, France
3
Caltech, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125, USA
4
European Southern Observatory, Casilla 19001, Santiago 19, Chile
5
Max Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121
Bonn, Germany
6
Laboratoire A. H. Fizeau, UMR 6525, Université de Nice-Sophia
Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
7
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748
Garching, Germany
Received:
15
July
2009
Accepted:
3
November
2009
We present new long-baseline spectro-interferometric
observations of the Herbig Ae star HD 163296 (MWC 275) obtained in
the H and K bands with the AMBER instrument at the VLTI. The
observations cover a range of spatial resolutions between ~3
and ~12 milliarcseconds, with a spectral resolution of
~30. With a total of 1481 visibilities and 432 closure phases,
they represent the most comprehensive (u,v) coverage achieved so
far for a young star. The circumstellar material is resolved at
the sub-AU spatial scale
and closure phase measurements indicate a small but significant
deviation from point-symmetry. We discuss the results assuming
that the near-infrared excess in HD 163296 is dominated by the emission
of a circumstellar disk. A successful fit to the spectral energy
distribution, near-infrared visibilities and closure phases is
found with a model in which a dominant contribution to the H and
K band emission originates in an optically thin, smooth and
point-symmetric region extending from about 0.1 to 0.45 AU. At a
distance of 0.45 AU from the star, silicates condense, the disk
becomes optically thick and develops a puffed-up rim, whose skewed
emission can account for the non-zero closure phases.
We discuss the source of the inner disk emission and tentatively
exclude dense molecular gas as well as optically thin atomic or ionized gas as its possible origin.
We propose instead that the smooth inner emission is produced by
very refractory grains in a partially cleared region, extending to
at least ~0.5 AU. If so, we may be observing the disk of
HD 163296 just before it reaches the transition disk
phase. However, we note that the nature of the refractory grains
or, in fact, even the possibility of any grain surviving at the
very high temperatures we require (~ K at 0.1 AU
from the star) is unclear and should be investigated further.
Key words: protoplanetary disks / methods: observational / techniques: interferometric / stars: pre-main sequence
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.