Issue |
A&A
Volume 510, February 2010
|
|
---|---|---|
Article Number | A91 | |
Number of page(s) | 12 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/200913700 | |
Published online | 17 February 2010 |
Absolute dimensions of eclipsing binaries*,**
XXVII. V1130 Tauri: a metal-weak F-type system, perhaps with preference for Y = 0.23–0.24
1
Niels Bohr Institute, Copenhagen University,
Juliane Maries Vej 30,
2100 Copenhagen Ø, Denmark e-mail: jvc@nbi.ku.dk
2
Instituto de Astrofísica de Andalucía, CSIC,
Apartado 3004, 18080 Granada, Spain
Received:
19
November
2009
Accepted:
4
December
2009
Context. Double-lined, detached eclipsing binaries are our main source for accurate
stellar masses and radii.
This paper is the first in a series with focus on the upper half of the
main-sequence band and tests of 1–2 evolutionary models.
Aims. We aim to determine absolute dimensions and abundances for the detached eclipsing binary V1130 Tau, and to perform a detailed comparison with results from recent stellar evolutionary models.
Methods. uvby light curves and standard photometry have been obtained with
the Strömgren Automatic Telescope, and high-resolution spectra
have been acquired at the FEROS spectrograph; both are ESO, La Silla facilities.
We have applied the Wilson-Devinney model for the photometric analysis,
spectroscopic elements are based on radial velocities measured via
broadening functions, and [Fe/H] abundances have been determined from synthetic
spectra and uvby calibrations.
Results. V1130 Tau is a bright (mV = 6.56), nearby (71 ± 2 pc) detached system with
a circular orbit (P = 080). The components are deformed with filling factors
above 0.9. Their masses and radii have been established to 0.6–0.7%.
We derive a [Fe/H] abundance of -0.25 ± 0.10.
The measured rotational velocities, 92.4 ± 1.1 (primary) and
104.7 ± 2.7 (secondary) km s-1, are in fair agreement with synchronization.
The larger 1.39
secondary component has evolved to the middle of the
main-sequence band and is slightly cooler than the 1.31
primary.
Yonsai-Yale, BaSTI, and Granada evolutionary models for the observed
metal abundance and a “normal” He content of Y = 0.25-0.26,
marginally reproduce the components at ages between 1.8 and 2.1 Gyr.
All such models are, however, systematically about 200 K hotter than observed
and predict ages for the more massive component, which are systematically
higher than for the less massive component.
These trends can not be removed by adjusting the amount of core overshoot or
envelope convection level, or by including rotation in the model calculations.
They may be due to proximity effects in V1130 Tau, but on the other hand, we find
excellent agreement for 2.5–2.8 Gyr Granada models with a slightly lower Y of 0.23–0.24.
Conclusions. V1130 Tau is a valuable addition to the very few well-studied 1–2 binaries
with component(s) in the upper half of the main-sequence band, or beyond.
The stars are not evolved enough to provide new information on the dependence
of core overshoot on mass (and abundance), but might – together with a larger sample
of well-detached systems – be useful for further tuning of the helium enrichment law.
Analyses of such systems are in progress.
Key words: stars: evolution / stars: fundamental parameters / stars: individual: V1130 Tau / binaries: eclipsing / techniques: photometric / techniques: radial velocities
Based on observations carried out at the Strömgren Automatic Telescope (SAT) and the 1.5 m telescope at ESO, La Silla (62.H-0319, 62.L-0284, 63.H-0080, 64.L-0031, 66.D-0178).
Table 11 is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A91
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.