Issue |
A&A
Volume 509, January 2010
|
|
---|---|---|
Article Number | A25 | |
Number of page(s) | 10 | |
Section | Galactic structure, stellar clusters, and populations | |
DOI | https://doi.org/10.1051/0004-6361/200913381 | |
Published online | 12 January 2010 |
Determination of the local dark matter density in our Galaxy
Institut für Experimentelle Kernphysik, Karlsruher Insitut
für Technologie (KIT), PO Box 6980, 76128 Karlsruhe, Germany e-mail: Markus.Weber@ekp.uni-karlsruhe.de
Received:
30
September
2009
Accepted:
9
October
2009
Context. The rotation curve, the total mass and the gravitational potential of the Galaxy are sensitive measurements of the dark matter halo profile.
Aims. Cuspy and cored DM halo profiles are analysed with respect to recent astronomical constraints in order to constrain the shape of the Galactic DM halo and the local DM density.
Methods. All Galactic density components (luminous matter and DM) are parametrized. Then the total density distribution is constrained by astronomical observations: 1) the total mass of the Galaxy, 2) the total matter density at the position of the Sun, 3) the surface density of the visible matter, 4) the surface density of the total matter in the vicinity of the Sun, 5) the rotation speed of the Sun and 6) the shape of the velocity distribution within and above the Galactic disc. The mass model of the Galaxy is mainly constrained by the local matter density (Oort limit), the rotation speed of the Sun and the total mass of the Galaxy from tracer stars in the halo.
Results. We showed from a statistical fit to all data that
the local DM density is strongly positively (negatively)
correlated with the scale length of the DM halo (baryonic
disc). Since these scale lengths are poorly constrained the
local DM density can vary from 0.2 to 0.4 GeV cm-3
(
pc-3) for a spherical DM halo profile and allowing total Galaxy masses up to
. For oblate DM haloes and dark
matter discs, as predicted in recent N-body simulations, the
local DM density can be increased significantly.
Key words: Galaxy: halo / Galaxy: structure / Galaxy: kinematics and dynamics / Galaxy: fundamental parameters / Galaxy: general
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.