Issue |
A&A
Volume 504, Number 3, September IV 2009
|
|
---|---|---|
Page(s) | 719 - 726 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/200912099 | |
Published online | 24 July 2009 |
Metal enrichment of the intra-cluster medium by thermally and cosmic-ray driven galactic winds
An analytical prescription for galactic outflows
1
Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria e-mail: wolfgang.e.kapferer@uibk.ac.at
2
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
3
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
4
School of Mathematics and Maxwell Institute, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK
Received:
18
March
2009
Accepted:
14
July
2009
Aims. We investigate the efficiency and time-dependence of thermally and cosmic ray driven galactic winds for the metal enrichment of the intra-cluster medium (ICM) using a new analytical approximation for the mass outflow. The spatial distribution of the metals are studied using radial metallicity profiles and 2D metallicity maps of the model clusters as they would be observed by X-ray telescopes like XMM-Newton.
Methods. Analytical approximations for the mass loss by galactic winds driven by thermal and cosmic ray pressure are derived from the Bernoulli equation and implemented in combined N-body/hydrodynamic cosmological simulations with a semi-analytical galaxy formation model. Observable quantities like the mean metallicity, metallicity profiles, and 2D metal maps of the model clusters are derived from the simulations.
Results. We find that galactic winds alone cannot account for the observed metallicity of the ICM. At redshift the model clusters have
metallicities originating from galactic winds which are almost a factor of 10 lower than the observed values. For massive, relaxed clusters we find, as in previous studies, a
central drop in the metallicity due to a suppression of the galactic winds by the pressure of the ambient ICM. Combining ram-pressure
stripping and galactic winds we find radial metallicity profiles of the model clusters which agree qualitatively with observed profiles. Only in the
inner parts of massive clusters the observed profiles are steeper than in the simulations. Also the combination of galactic winds and ram-pressure
stripping yields too low values for the ICM metallicities. The slope of the redshift evolution of the mean metallicity in the simulations agrees
reasonably well with recent observations.
Key words: galaxies: clusters: general / intergalactic medium / ISM: jets and outflows / methods: numerical
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.