Issue |
A&A
Volume 498, Number 3, May II 2009
|
|
---|---|---|
Page(s) | 967 - 980 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/200811555 | |
Published online | 11 March 2009 |
Benchmark problems for continuum radiative transfer
High optical depths, anisotropic scattering, and polarisation
1
School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK e-mail: pinte@astro.ex.ac.uk
2
Sterrenkundig Instituut Anton Pannekoek, Universiteit Amsterdam, Kruislaan 403, 1098 Amsterdam, The Netherlands
3
Centro de Radioastronomía y Astrofsíca, Universidad Nacional Autóma de México, Morelia, Mich., Mexico
4
Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
5
UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
6
School of Physics & Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, UK
7
Laboratoire d'Astrophysique de Grenoble, CNRS/UJF UMR 5571, 414 rue de la Piscine, BP 53, 38041 Grenoble Cedex 9, France
Received:
19
December
2008
Accepted:
22
February
2009
Aims. Solving the continuum radiative transfer equation in high opacity media requires sophisticated numerical tools. In order to test the reliability of such tools, we present a benchmark of radiative transfer codes in a 2D disc configuration.
Methods. We test the accuracy of seven independently developed radiative transfer codes by comparing the temperature structures, spectral energy distributions, scattered light images, and linear polarisation maps that each model predicts for a variety of disc opacities and viewing angles. The test cases have been chosen to be numerically challenging, with midplane optical depths up 106, a sharp density transition at the inner edge and complex scattering matrices. We also review recent progress in the implementation of the Monte Carlo method that allow an efficient solution to these kinds of problems and discuss the advantages and limitations of Monte Carlo codes compared to those of discrete ordinate codes.
Results. For each of the test cases, the predicted results from the radiative transfer codes are within good agreement. The results indicate that these codes can be confidently used to interpret present and future observations of protoplanetary discs.
Key words: radiative transfer / circumstellar matter / accretion, accretion disks / planetary systems: protoplanetary disks / methods: numerical
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.