Issue |
A&A
Volume 495, Number 1, February III 2009
|
|
---|---|---|
Page(s) | 271 - 286 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:200810665 | |
Published online | 22 December 2008 |
Diagnoses to unravel secular hydrodynamical processes in rotating main sequence stars
1
Geneva Observatory, University of Geneva, chemin des Maillettes 51, 1290 Sauverny, Switzerland
2
Argelander Institute for Astronomy (AIfA), Auf dem Hügel 71, 53121 Bonn, Germany e-mail: decressin@astro.uni-bonn.de
3
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp Centre de Saclay, 91191 Gif-sur-Yvette, France e-mail: stephane.mathis@cea.fr
4
LUTH, Observatoire de Paris-CNRS-Université Paris-Diderot, Place Jules Janssen, 92195 Meudon, France
5
GRAAL, Université Montpellier II, CNRS, Place E. Bataillon, 34095 Montpellier Cedex 05, France
6
IAA-ULB, Université Libre de Bruxelles, Boulevard du Triomphe, CP 26, 1050 Bruxelles, Belgium
7
Réseau Québécois de Calcul de Haute Performance, Université de Montréal (DGTIC), CP 6128, succ. Centre-ville, Montréal H3C 3J7, Canada
8
LATT, CNRS UMR 5572, Université de Toulouse, 14 Av. Edouard Belin, 31400 Toulouse Cedex 04, France
Accepted: 18 November 2008
Context. Recent progress and constraints brought by helio and asteroseismology call for a better description of stellar interiors and an accurate description of rotation-driven mechanisms in stars.
Aims. We present a detailed analysis of the main physical processes responsible for the transport of angular momentum and chemical species in the radiative regions of rotating stars. We focus on cases where meridional circulation and shear-induced turbulence all that are included in the simulations (i.e., no either internal gravity waves nor magnetic fields). We put special emphasis on analysing the angular momentum transport loop and on identifying the contribution of each of the physical process involved.
Methods. We develop a variety of diagnostic tools designed to help disentangle
the role of the various transport mechanisms. Our analysis is based on
a 2-D representation of the secular hydrodynamics, which is treated
using expansions in spherical harmonics. By taking appropriate
horizontal averages, the problem reduces to one dimension, making it
implementable in a 1D stellar evolution code, while preserving the
advective character of angular momentum transport. We present a full
reconstruction of the meridional circulation and of the associated
fluctuations of temperature and mean molecular weight, along with
diagnosis for the transport of angular momentum, heat, and
chemicals. In the present paper these tools are used to validate the
analysis of two main sequence stellar models of 1.5 and 20 , for
which the hydrodynamics has previously been extensively studied in the
literature.
Results. We obtain a clear visualisation and a precise estimation of the different terms entering the angular momentum and heat transport equations in radiative zones of rotating stars. This enables us to corroborate the main results obtained over the past decade by Zahn, Maeder, and collaborators concerning the secular hydrodynamics of such objects. We focus on the meridional circulation driven by angular momentum losses and structural readjustments. We confirm quantitatively for the first time through detailed computations and separation of the various components that the advection of entropy by this circulation is balanced very well by the barotropic effects and the thermal relaxation during most of the main sequence evolution. This enables us to simplify for the thermal relaxation on this phase. The meridional currents in turn advect heat and generate temperature fluctuations that induce differential rotation through thermal wind, thus closing the transport loop. We plan to make use of our refined diagnosis tools in forthcoming studies of secular (magneto-)hydrodynamics of stars at various evolutionary stages.
Key words: hydrodynamics / turbulence / stars: evolution / stars: rotation
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.