Issue |
A&A
Volume 486, Number 3, August II 2008
|
|
---|---|---|
Page(s) | 663 - 678 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20079174 | |
Published online | 19 March 2008 |
Extragalactic jets with helical magnetic fields: relativistic MHD simulations
1
Centre for Plasma Astrophysics, K.U. Leuven (Leuven Mathematical Modeling and Computational Science Center), Celestijnenlaan 200B, 3001 Heverlee, Belgium e-mail: Rony.Keppens@wis.kuleuven.be
2
FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein, The Netherlands
3
Astronomical Institute, Utrecht University, The Netherlands
4
AstroParticule & Cosmologie (APC), Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France e-mail: fcasse@apc.univ-paris7.fr
Received:
30
November
2007
Accepted:
9
February
2008
Context. Extragalactic jets are judged to harbor dynamically important, organized magnetic fields that presumably aid in the collimation of the relativistic jet flows.
Aims. We here explore
the morphology of AGN jets pervaded by helical field and flow topologies
by means of grid-adaptive, high-resolution numerical simulations.
We concentrate on morphological features of the bow shock and the jet beam behind the
Mach disk, for various jet Lorentz factors and magnetic field helicities.
We investigate the influence of helical magnetic fields on
jet beam propagation in an overdense external medium.
We adopt a special relativistic magnetohydrodynamic (MHD) viewpoint on the
shock-dominated AGN jet evolution. Due to the adaptive mesh refinement (AMR),
we can concentrate on the long-term evolution of
kinetic energy-dominated jets, with beam-averaged Lorentz factor Γ 7, as they penetrate denser clouds. These jets have near-equipartition
magnetic fields (with the thermal energy) and radially varying
profiles within the jet radius
maximally reaching Γ ~ 22.
Methods. We used the AMRVAC code, with a novel hybrid block-based AMR strategy, to compute ideal plasma dynamics in special relativity. We combined this with a robust second-order shock-capturing scheme and a diffusive approach to controlling magnetic monopole errors.
Results. We find that the propagation speed of the bow shock systematically exceeds the
value expected from estimates using beam-average parameters, in accordance with the centrally-peaked variation. The helicity of the beam magnetic field is effectively transported down the beam, with compression zones between the diagonal internal cross-shocks showing stronger toroidal field regions. In comparison with
equivalent low-relativistic jets (Γ
1.15), which get surrounded by
cocoons with vortical backflows filled by mainly toroidal field, the high speed
jets only demonstrate localized, strong toroidal field zones within the
backflow vortical structures. These structures are ring-like due to our
axisymmetry assumption and may further cascade to a smaller scale in 3D. We find evidence of
a more poloidal, straight field layer, compressed between jet beam and
backflows. This layer decreases the destabilizing influence of the backflow on the jet beam.
In all cases, the jet beam contains rich cross-shock patterns, across which part of the kinetic energy gets transfered.
For the high-speed reference jet considered here, significant jet deceleration only occurs beyond distances exceeding
, as the axial flow can reaccelerate downstream to the internal cross shocks.
This reacceleration is magnetically aided by field compression across the internal shocks that pinch
the flow.
Key words: magnetohydrodynamics (MHD) / methods: numerical / ISM: jets and outflows / relativity
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.