Issue |
A&A
Volume 454, Number 2, August I 2006
APEX Special Booklet
|
|
---|---|---|
Page(s) | 393 - 400 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20054491 | |
Published online | 11 July 2006 |
Local Kelvin-Helmholtz instability and synchrotron modulation in Pulsar Wind Nebulae
1
Astronomy Department, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720-3411, USA e-mail: niccolo@astron.berkeley.edu
2
Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, L.go E. Fermi 2, 50125 Firenze, Italy
Received:
7
November
2005
Accepted:
14
March
2006
We present here a series of numerical simulations of the development of Kelvin-Helmholtz instability in a relativistically hot plasma. The physical parameters in the unperturbed state are chosen to be representative of local conditions encountered in Pulsar Wind Nebulae (PWNe), with a main magnetic field perpendicular to a mildly relativistic shear layers. By using a numerical code for Relativistic MHD, we investigate the effect of an additional magnetic field component aligned with the shear velocity, and we follow the evolution of the instability to the saturation and turbulent regimes. Based on the resulting flow structure, we then compute synchrotron maps in order to evaluate the signature of Kelvin-Helmholtz instability on the emission and we investigate how the time scale and the amplitude of the synchrotron modulations depend on shear velocity and magnetic field. Finally we compare our results to the observed variable features in the Crab Nebula. We show that the Kelvin-Helmholtz instability cannot account for the wisps variability, but it might be responsible for the time dependent filamentary structure observed in the main torus.
Key words: instabilities / magnetohydrodynamics (MHD) / methods: numerical / ISM: supernova remnant / relativity / radiation mechanisms: non-thermal
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.