Issue |
A&A
Volume 484, Number 1, June II 2008
|
|
---|---|---|
Page(s) | 241 - 249 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20078001 | |
Published online | 08 April 2008 |
The characteristics of the IR emission features in the spectra of Herbig Ae stars: evidence for chemical evolution
1
Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV, Groningen, The Netherlands e-mail: boersma@astro.rug.nl
2
Max-Planck Institut für Astronomie, Köningstuhl 17, 69117 Heidelberg, Germany
3
Space Research Organisation Netherlands, PO Box 800, 9700 AV, Groningen, The Netherlands
4
Leiden Observatory, PO Box 9513, 2300 RA Leiden, The Netherlands
5
Instituut voor Sterrenkunde, K. U. Leuven, Celestijnlaan 200B, 3001 Heverlee, Belgium
6
NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035, USA
7
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
Received:
1
June
2007
Accepted:
18
March
2008
Context. Infrared (IR) spectra provide a prime tool to study the characteristics of polycyclic aromatic hydrocarbon (PAH) molecules in regions of star formation. Herbig Ae/Be stars are a class of young pre-main sequence stellar objects of intermediate mass. They are known to have varying amounts of natal cloud material still present in their direct vicinity.
Aims. We characterise the IR emission bands, due to fluorescence by PAH molecules, in the spectra of Herbig Ae/Be stars and link observed variations to spatial aspects of the mid-IR emission.
Methods. We analysed two PAH dominated spectra from a sample of 15 Herbig Ae/Be stars observed with the Spitzer Space Telescope.
Results. We derived profiles of the major PAH bands by
subtracting appropriate continua. The shape and the measured band
characteristics show pronounced variations between the two Spitzer
spectra investigated. Those variations parallel those found between
three infrared space observatory (ISO) spectra of other,
well-studied, Herbig Ae/Be stars. The derived profiles are compared
to those from a broad sample of sources, including reflection
nebulae, planetary nebulae, regions, young stellar
objects, evolved stars and galaxies. The Spitzer and ISO spectra
exhibit characteristics commonly interpreted respectively as
interstellar matter-like (ISM), non-ISM-like, or a combination of
the two.
Conclusions. We argue that the PAH emission detected from the sources exhibiting a combination of ISM-like and non-ISM-like characteristics indicates the presence of two dissimilar, spatially separated, PAH families. As the shape of the individual PAH band profiles reflects the composition of the PAH molecules involved, this demonstrates that PAHs in subsequent, evolutionary linked stages of star formation are different from those in the general ISM, implying active chemistry. None of the detected PAH emission can be associated with the (unresolved) disk and is thus associated with the circumstellar (natal) cloud. This implies that chemical changes may already occur in the (collapsing?) natal cloud and not necessarily in the disk.
Key words: stars: planetary systems: formation / infrared: stars / line: profiles / ISM: molecules
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.