Issue |
A&A
Volume 474, Number 3, November II 2007
|
|
---|---|---|
Page(s) | 1061 - 1071 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361:20078210 | |
Published online | 23 October 2007 |
H-atom bombardment of CO2, HCOOH, and CH3CHO containing ices
Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: bisschop@strw.leidenuniv.nl
Received:
3
July
2007
Accepted:
11
September
2007
Context.Hydrogenation reactions are expected to be among the most important surface reactions on interstellar ices. However, solid state astrochemical laboratory data on reactions of H-atoms with common interstellar ice constituents are largely lacking.
Aims.The goal of our laboratory work is to determine whether and how carbon dioxide (CO2), formic acid (HCOOH) and acetaldehyde (CH3CHO) react with H-atoms in the solid state at low temperatures and to derive reaction rates and production yields.
Methods.Pure CO2, HCOOH and CH3CHO interstellar ice analogues are bombarded by H-atoms in an ultra-high vacuum experiment. The experimental conditions are varied systematically. The ices are monitored by reflection absorption infrared spectroscopy and the reaction products are detected in the gas phase through temperature programmed desorption. These techniques are used to determine the resulting destruction and formation yields as well as the corresponding reaction rates.
Results.Within the sensitivity of our set-up we conclude that H-atom bombardment of pure CO2 and HCOOH ice does not result in detectable reaction products. The upper limits on the reaction rates are ≤710-17 cm2 s-1 which make it unlikely that these species play a major role in the formation of more complex organics in interstellar ices due to reactions with H-atoms. In contrast, CH3CHO does react with H-atoms. At most 20% is hydrogenated to ethanol (C2H5OH) and a second reaction route leads to the break-up of the C–C bond to form solid state CH4 (~20%) as well as H2CO and CH3OH (15–50%). The methane production yield is expected to be equal to the summed yield of H2CO and CH3OH and therefore CH4 most likely evaporates partly after formation due to the high exothermicity of the reaction. The reaction rates for CH3CHO destruction depend on ice temperature and not on ice thickness. The results are discussed in an astrophysical context.
Key words: astrochemistry / molecular data / ISM: molecules / methods: laboratory / molecular processes
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.