Issue |
A&A
Volume 472, Number 3, September IV 2007
|
|
---|---|---|
Page(s) | 993 - 1001 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361:20077659 | |
Published online | 16 July 2007 |
On the migration of protoplanets embedded in circumbinary disks
Astronomy Unit, Queen Mary, University of London, Mile End Rd, London, E1 4NS, UK e-mail: a.pierens@qmul.ac.uk
Received:
17
April
2007
Accepted:
13
July
2007
Aims.We present the results of hydrodynamical simulations of low mass protoplanets embedded in circumbinary accretion disks. The aim is to examine the migration and long term orbital evolution of the protoplanets, in order to establish the stability properties of planets that form in circumbinary disks.
Methods.Simulations were performed using a grid-based hydrodynamics code.
First we present a set of calculations that study how a binary interacts
with a circumbinary disk. We evolve the system for ~ 105 binary
orbits, which is the time needed for the system to reach a
quasi-equilibrium state. From this time onward the apsidal lines of the
disk and the binary are aligned, and the binary eccentricity remains
essentially unchanged with a value of eb ~ 0.08.
Once this stationary state is obtained, we embed a low mass
protoplanet in the disk and let it evolve under the action of the
binary and disk forces. We consider protoplanets
with masses of mp = 5, 10 and 20 .
Results.In each case, we find that inward migration of the protoplanet is stopped at the edge of the tidally truncated cavity formed by the binary. This effect is due to positive corotation torques, which can counterbalance the net negative Lindblad torques in disk regions where the surface density profile has a sufficiently large positive gradient. Halting of migration occurs in a region of long-term stability, suggesting that low mass circumbinary planets may be common, and that gas giant circumbinary planets should be able to form in circumbinary disks.
Key words: accretion, accretion disks / planets and satellites: formation / stars: binaries: close / hydrodynamics / methods: numerical
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.