Issue |
A&A
Volume 482, Number 1, April IV 2008
|
|
---|---|---|
Page(s) | 333 - 340 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361:20079062 | |
Published online | 18 February 2008 |
Constraints on resonant-trapping for two planets embedded in a protoplanetary disc
Astronomy Unit, Queen Mary, University of London, Mile End Rd, London, E1 4NS, UK e-mail: a.pierens@qmul.ac.uk
Received:
13
November
2007
Accepted:
13
February
2008
Context. A number of extrasolar planet systems contain pairs of Jupiter-like planets in mean motion resonances. As yet there are no known resonant systems which consist of a giant planet and a significantly lower-mass body.
Aims. We investigate the evolution of two-planet systems embedded in a protoplanetary disc, which are composed of a Jupiter-mass planet plus another body located further out in the disc. The aim is to examine how the long-term evolution of such a system depends on the mass of the outer planet.
Methods. We have performed 2D numerical simulations using a grid-based
hydrodynamics code. The
planets can interact with each other and with the disc in which
they are embedded. We consider outermost planets with masses
ranging from 10 to 1 MJ. Combining the
results of these calculations and analytical estimates, we also examine the case of outermost bodies with masses < 10
.
Results. Differential migration of the planets due to disc torques leads to different
evolution outcomes depending on the mass of the outer protoplanet.
For planets with mass 3.5
the type II
migration rate of the giant exceeds the type I
migration rate of the outer body, resulting in divergent migration.
Outer bodies with masses in the range 3.5 <
20
become
trapped at the edge of the gap formed by the giant planet, because
of corotation torques. Higher mass planets
are captured into resonance with the inner planet.
If 30
40
or mo = 1 MJ,
then the 2:1 resonance is established. If 80
100
,
the 3:2 resonance is favoured.
Simulations of gas-accreting protoplanets of mass
20
, trapped initially at the edge of the gap,
or in the 2:1 resonance, also result in eventual
capture in the 3:2 resonance as the planet mass grows to become
close to the Saturnian value.
Conclusions. Our results suggest that there is a theoretical lower limit to the mass of an outer planet that can be captured into resonance with an inner Jovian planet, which is relevant to observations of extrasolar multiplanet systems. Furthermore, capture of a Saturn-like planet into the 3:2 resonance with a Jupiter-like planet is a very robust outcome of simulations, independent of initial conditions. This result is relevant to recent scenarios of early Solar System evolution which require Saturn to have existed interior to the 2:1 resonance with Jupiter prior to the onset of the Late Heavy Bombardment.
Key words: accretion, accretion disks / planetary systems: formation / hydrodynamics / methods: numerical
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.