Issue |
A&A
Volume 468, Number 3, June IV 2007
Extended baselines for the IRAM Plateau de Bure interferometer: First results
|
|
---|---|---|
Page(s) | L63 - L66 | |
DOI | https://doi.org/10.1051/0004-6361:20066785 | |
Published online | 11 January 2007 |
Letter to the Editor
Molecular gas in NUclei of GAlaxies (NUGA): VI. Detection of a molecular gas disk/torus via HCN in the Seyfert 2 galaxy NGC 6951?*
1
Harvard-Smithsonian Center for Astrophysics, SMA project, 645 N A`ohoku Pl., Hilo, HI,96720, USA e-mail: mkrips@cfa.harvard.edu
2
Institut de Radio Astronomie Millimétrique (IRAM), 38406, Saint Martin d'Hères, France
3
Observatorio Astronómico Nacional (OAN)– Observatorio de Madrid, C/ Alfonso XII 3, 28014 Madrid, Spain
4
Observatoire de Paris, LERMA, 61 Av. de l'Observatoire, 75014 Paris, France
5
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
6
Department of Physics and Astronomy, Rutgers, State University of NJ, 136 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA
7
Universität zu Köln, I.Physikalisches Institut, Zülpicher Str. 77, 50937 Köln, Germany
8
INAF-Istituto di Radioastronomia/Sezione Firenze Largo E. Fermi 5, 50125 Firenze, Italy
9
IRAM, Avenida Divina Pastora, 7, Núcleo Central, 18012 Granada, Spain
10
Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, 85741 Garching, Germany
Received:
21
November
2006
Accepted:
4
January
2007
Context.Several studies of nearby active galaxies indicate significantly higher HCN-to-CO intensity ratios in AGN (e.g., NGC 1068) than in starburst (e.g., M 82) environments. HCN enhancement can be caused by many different effects, such as higher gas densities and/or temperatures, UV/X-ray radiation, and non-collisional excitation. As active galaxies often exhibit intense circumnuclear star formation, high angular resolution/high sensitivity observations are of paramount importance to disentangling the influence of star formation from that of nuclear activity on the chemistry of the surrounding molecular gas. The tight relation of HCN enhancement and nuclear activity may qualify HCN as an ideal tracer of molecular gas close to the AGN, providing complementary and additional information to that gained via CO.
Aims.NGC 6951 houses nuclear and starburst activity, making it an ideal testbed in which to study the effects of different excitation conditions on the molecular gas. Previous lower angular resolution/sensitivity observations of HCN(1–0) carried out with the Nobeyama Millimeter array by Kohno et al. (1999a, ApJ, 511, 157) led to the detection of the starburst ring, but no central emission has been found. Our aim was to search for nuclear HCN emission and, if successful, for differences of the gas properties of the starburst ring and the nucleus.
Methods.We used the new A, B, C and D configurations of the IRAM PdBI
array to observe HCN(1–0) in NGC 6951 at high angular resolution
( pc) and sensitivity.
Results.We detect very compact (≤50 pc) HCN emission in the nucleus of NGC 6951, supporting previous hints of nuclear gas structure. Our observations also reveal HCN emission in the starburst ring and resolve it into several peaks, leading to a higher coincidence between the HCN and CO distributions than previously reported by Kohno et al. (1999a).
Conclusions.We find a significantly higher HCN-to-CO intensity ratio (≥0.4) in the nucleus than in the starburst ring (0.02–0.05). As for NGC 1068, this might result from a higher HCN abundance in the centre due to an X-ray dominated gas chemistry, but a higher gas density/temperature or additional non-collisional excitation of HCN cannot be entirely ruled out, based on these observations. The compact HCN emission is associated with rotating gas in a circumnuclear disk/torus.
Key words: galaxies: individual: NGC 6951 / galaxies: active / galaxies: nuclei / galaxies: Seyfert / galaxies: starburst / galaxies: ISM
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.