EDP Sciences
Free Access
Volume 468, Number 3, June IV 2007
Page(s) 1009 - 1024
Section Interstellar and circumstellar matter
DOI https://doi.org/10.1051/0004-6361:20066466
Published online 11 April 2007

A&A 468, 1009-1024 (2007)
DOI: 10.1051/0004-6361:20066466

Star formation in Perseus

II. SEDs, classification, and lifetimes
J. Hatchell1, G. A. Fuller2, J. S. Richer3, T. J. Harries1, and E. F. Ladd4

1  School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
    e-mail: hatchell@astro.ex.ac.uk
2  School of Physics & Astronomy, University of Manchester, PO Box 88, Manchester M60 1QD, UK
3  Cavendish Laboratory, Cambridge CB3 0HE, UK
4  Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA

(Received 28 September 2006 / Accepted 26 March 2007)

Context.Hatchell et al. (2005, A&A, 440, 151) (Paper I) published a submillimetre continuum map of the Perseus molecular cloud, detecting the starless and protostellar cores within it.
Aims.To determine the evolutionary stage of each submm core in Perseus, and investigate the lifetimes of these phases.
Methods.We compile spectral energy distributions (SEDs) from 2MASS (1-2  $\mu{\rm m}$), Spitzer IRAC (3.6, 4.5, 5.8, 8.0  $\mu{\rm m}$), Michelle (11 and 18  $\mu{\rm m}$), IRAS (12, 25, 60, 100  $\mu{\rm m}$), SCUBA (450 and 850  $\mu{\rm m}$) and Bolocam (1100  $\mu{\rm m}$) data. Sources are classified starless/protostellar on the basis of infrared and/or outflow detections and Class I/Class 0 on the basis of $T_{\rm bol}$, $\mbox{$L_{\rm bol}$ }/\mbox{$L_{\rm smm}$ }$ and F3.6/F850. In order to investigate the dependence of these evolutionary indicators on mass, we construct radiative transfer models of Class 0 sources.
Results.Of the submm cores, 56/103 (54%) are confirmed protostars on the basis of infrared emission or molecular outflows. Of these, 22 are classified Class 1 on the basis of three evolutionary indicators, 34 are Class 0, and the remaining 47 are assumed starless. Perseus contains a much greater fraction of Class 0 sources than either Taurus or Rho Oph. We derive estimates for the correlation between bolometric luminosity and envelope mass for Class I and Class 0 sources.
Conclusions.Comparing the protostellar with the T Tauri population, the lifetime of the protostellar phase in Perseus is 0.25-0.67 Myr (95% confidence limits). The relative lifetime of the Class 0 and Class 1 phases are similar, confirming the results of Visser et al. (2002, AJ, 124, 2756) in isolated cores. We find that for the same source geometry but different masses, evolutionary indicators such as $T_{\rm bol}$ vary their value. It is therefore not always appropriate to use a fixed threshold to separate Class 0 and Class I sources. More modelling is required to determine the observational characteristics of the Class 0/Class I boundary over a range of masses.

Key words: submillimeter -- stars: formation -- stars: evolution -- ISM: structure -- ISM: dust, extinction

© ESO 2007

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.