Issue |
A&A
Volume 461, Number 2, January II 2007
|
|
---|---|---|
Page(s) | 381 - 384 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20066245 | |
Published online | 26 September 2006 |
New electron-proton Bremsstrahlung rates for a hot plasma where the electron temperature is much smaller than the proton temperature
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK e-mail: mm@ast.cam.ac.uk
Received:
14
August
2006
Accepted:
21
September
2006
Context.Observations of X-Ray sources harbouring a black hole and an accretion disc show the presence of at least two spectral components. One component is black-body radiation from an optically thick standard accretion disc. The other is produced in a optically thin corona and usually shows a powerlaw behaviour. Electron-proton (ep) bremsstrahlung is one of the contributing radiation mechanisms in the corona. Soft photons from the optically thick disc can Compton cool the electrons in the corona and therefore lead to a two-temperature plasma, where electrons and ions have different temperatures.
Aims.We qualitatively discuss effects on ep-bremsstrahlung in the presence of such a two-temperature plasma.
Methods. We use the classical dipole approximation allowing for non-relativistic electrons and protons and apply quantum corrections through high-precision Gaunt factors.
Results.In the two-temperature case () the protons
cause
a significant fraction of the ep-bremsstrahlung if their speed is high
compared to the electrons. We give accurate values for
ep-bremsstrahlung including quantum-mechanical corrections in the non-relativistic limit and give some
approximations in the relativistic limit.
Conclusions.The formulae presented in this paper can be used in models of black hole accretion discs where an optically thin corona can comprise a two-temperature plasma. This work could be extended to include the fully relativistic case if required.
Key words: radiation mechanisms: general / X-rays: general
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.