Issue |
A&A
Volume 448, Number 2, March III 2006
|
|
---|---|---|
Page(s) | 457 - 470 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20054033 | |
Published online | 24 February 2006 |
Large-scale molecular shocks in galaxies: the SiO interferometer map of IC 342
1
Observatorio Astronómico Nacional (OAN) - Observatorio de Madrid, C/ Alfonso XII 3, 28014 Madrid, Spain e-mail: [a.usero;s.gburillo;a.fuente]@oan.es
2
Instituto de Estructura de la Materia, DAMIR-CSIC, C/ Serrano 121, 28006 Madrid, Spain e-mail: jmartin.pintado@iem.cfmac.csic.es
3
IRAM, 300 rue de la Piscine, Domaine Universitaire, 38406 St. Martin d'Hères Cedex, France e-mail: neri@iram.fr
Received:
11
August
2005
Accepted:
6
October
2005
We present the first high-resolution () images of the emission of silicon monoxide (SiO) in the nucleus of the nearby spiral IC 342, obtained with the IRAM Plateau de Bure Interferometer (PdBI). Using a two-field mosaic, we have simultaneously mapped the emission of the SiO() and H13CO+() lines in a region of ~0.9 kpc 1.3 kpc (RA Dec) centered around the nucleus of IC 342. The bulk of the emission in the two lines comes from a pc spiral arm located to the North and a central component that forms the southern ridge of a pc nuclear ring that was identified in other interferometer maps of the galaxy. We detect continuum emission at 86.8 GHz in a pc central source. The continuum emission, dominated by thermal free-free bremsstrahlung, is mostly anticorrelated with the observed distribution of SiO clouds. The SiO-to-H13CO+ intensity ratio is seen to increase by an order of magnitude from the nuclear ring (~0.3) to the spiral arm (~3.3). Furthermore the gas kinematics show significant differences between SiO and H13CO+ over the spiral arm, where the linewidths of SiO are a factor of 2 larger than those of H13CO+. The average abundance of SiO in the inner pc of IC 342 is X(SiO) . This shows that shock chemistry is at work in the inner molecular gas reservoir of IC 342. To shed light on the nature of shocks in IC 342, we have compared the emission of SiO with another tracer of molecular shocks: the emission of methanol (CH3OH). We find that the significant difference of the abundance of SiO measured between the spiral arm (X(SiO) ~ a few 10-9) and the nuclear ring (X(SiO) ~ 10-10) is not echoed by a comparable variation in the SiO-to-CH3OH intensity ratio. This implies that the typical shock velocities should be similar in the two regions. In contrast, the fraction of shocked molecular gas should be ~5-7 times larger in the spiral arm (up to ~10% of the available molecular gas mass over the arm region) compared to the nuclear ring. In the light of these results, we revise the validity of the various scenarios that have been proposed to explain the onset of shock chemistry in galaxies and study their applicability to the nucleus of IC 342. We conclude that the large-scale shocks revealed by the SiO map of IC 342 are mostly unrelated to star formation and arise instead in a pre-starburst phase. Shocks are driven by cloud-cloud collisions along the potential well of the IC 342 bar. The general implications for the current understanding of galaxy evolution are discussed.
Key words: galaxies: individual: IC 342 / galaxies: starburst / galaxies: nuclei / ISM: molecules / molecular processes / radio lines: galaxies
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.