Issue |
A&A
Volume 447, Number 1, February III 2006
|
|
---|---|---|
Page(s) | 277 - 283 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20052727 | |
Published online | 27 January 2006 |
Is the model of one-armed oscillations able to explain the long-term V/R changes of Be stars?
1
Astronomical Institute of the Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
2
Mathematical Institute of the University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany e-mail: roman.firt@uni-bayreuth.de
3
Astronomical Institute of the Academy of Sciences, 251 65 Ondřejov, Czech Republic
Received:
19
January
2005
Accepted:
28
September
2005
Context.Many scientists studying Be stars currently adopt the
model of one-armed oscillations as the correct explanation of the
cyclic long-term variations observed for a number of Be
stars. We test the ability of this model to be used for the
predictions of V/R variations in real observed Be stars.
Aims.The behavior of the one-armed oscillations can be described as a solution of linearized hydrodynamical equations with the presence of “distorted” gravitational potential and a radiation force.
Methods.We developed a new computer program to model one-armed oscillations in Be star disks, which includes both the pressure force and the quadrupole term in the gravitational potential, related to the obliquity of a rapidly rotating star inside the disk. Moreover, we slightly improved the model in an effort to decrease the number of input parameters with the help of NLTE stellar atmosphere models.
Results.We carried out detailed tests of the dependence of
“periods” predicted by the model on all individual input
parameters. We arrived at the following results:
(1) the model has great potential to
explain not only the cause of the cyclic long-term
changes
but also some of the observed statistical properties of the
phenomenon.
(2) The model in its present linear form cannot be considered as
proven. Its ability to predict the duration of
cycles for
individual well observed Be stars is insufficient. Changing some
of the input parameters of the model, which are still loosely
constrained by observations and/on current understanding of the
disks, like the radial density distribution in the disk, one can
easily arrive at any desired cycle length from, say, 1 to 20 years.
Conclusions. Clearly, a much more sophisticated non-linear and self-consistent model of disk structure and its oscillations will be needed before a truly quantitative test of a one-armed model vs. observations will be possible.
Key words: stars: emission line, Be / stars: oscillations / stars: circumstellar matter
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.