Issue |
A&A
Volume 420, Number 2, June III 2004
|
|
---|---|---|
Page(s) | 737 - 749 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20041040 | |
Published online | 28 May 2004 |
Kelvin-Helmholtz and shear instability of a helical flow around a magnetic flux tube
1
Max-Planck-Institut für Sonnensystemforschung (Formerly: Max-Planck-Institut für Aeronomie.) , Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany
2
Bodenacherstrasse 33, 8121 Benglen, Switzerland
Corresponding author: M. Schüssler, msch@linmpi.mpg.de
Received:
15
January
2004
Accepted:
12
March
2004
Magnetic flux concentrations in the solar (sub)photosphere are surrounded by strong downflows, which come into swirling motion owing to the conservation of angular momentum. While such a whirl flow can stabilize a magnetic flux tube against the MHD fluting instability, it potentially becomes subject to Kelvin-Helmholtz and shear instability near the edge of the flux tube, which may lead to twisting of the magnetic field and perhaps even to the disruption of the magnetic structure. As a first step towards studying the relevance of such instabilities, we investigate the stability of an incompressible flow with longitudinal and azimuthal (whirl) components surrounding a cylinder with a uniform longitudinal magnetic field. We find that a sharp jump of the azimuthal flow component at the cylinder boundary always leads to Kelvin-Helmholtz-type instability for sufficiently small wavelength of the perturbation. On the other hand, a smooth and wide enough transition of the azimuthal velocity towards the surface of the cylinder leads to stable configurations, even for a discontinuous profile of the longitudinal flow.
Key words: magnetohydrodynamics: MHD / hydrodynamics / instabilities / Sun: magnetic fields / Sun: photosphere
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.