Issue |
A&A
Volume 415, Number 1, February III 2004
|
|
---|---|---|
Page(s) | 349 - 376 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20034594 | |
Published online | 03 February 2004 |
Stellar and wind parameters of Galactic O-stars*,**
The influence of line-blocking/blanketing
1
Universitäts-Sternwarte München, Scheinerstr. 1, 81679 München, Germany
2
Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
3
Departamento de Astrofísica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, s/n, 38071 La Laguna, Spain
Corresponding author: T. Repolust, repo@usm.uni-muenchen.de
Received:
20
May
2003
Accepted:
17
October
2003
We have re-analyzed the Galactic O-star sample from [CITE]
by means of line-blanketed NLTE model atmospheres in order to investigate
the influence of line-blocking/blanketing on the derived parameters. The
analysis has been carried out by fitting the photospheric and wind lines
from H and He. In most cases we obtained a good fit, but we have
also found certain inconsistencies which are probably related to a still
inadequate treatment of the wind structure. These inconsistencies comprise
the line cores of H\gamma and H\beta in supergiants (the synthetic profiles are
too weak when the mass-loss rate is determined by matching H\alpha) and the
“generalized dilution effect” (cf. Voels et al. 1989) which is still present
in He i 4471 of cooler supergiants and giants.
Compared to pure H/He plane-parallel models we found a decrease in
effective temperatures which is largest at earliest spectral types
and for supergiants (with a maximum shift of roughly 8000 K).
This finding is explained by the fact that line-blanketed models of hot
stars have photospheric He ionization fractions similar to those from
unblanketed models at higher Teff and higher . Consequently, any
line-blanketed analysis based on the He ionization equilibrium results in
lower Teff-values along with a reduction of either
or helium
abundance (if the reduction of
is prohibited by the Balmer line wings).
Stellar radii and mass-loss rates, on the other hand, remain more or less
unaffected by line-blanketing.
We have calculated “new” spectroscopic masses and compared them with
previous results. Although the former mass discrepancy [CITE]
becomes significantly reduced, a systematic trend for masses below 50
seems to remain: The spectroscopically derived values are smaller than the
“evolutionary masses” by roughly 10
. Additionally, a significant
fraction of our sample stars stays over-abundant in He, although the actual
values were found to be lower than previously determined.
Also the wind-momentum luminosity relation (WLR) changes because of
lower luminosities and almost unmodified wind-momentum rates. Compared to
previous results, the separation of the WLR as a function of luminosity
class is still present but now the WLR for giants/dwarfs is
consistent with theoretical predictions.
We argue that the derived mass-loss rates of stars
with H\alpha in emission are affected by clumping in the lower wind
region. If the predictions from different and independent theoretical
simulations (Vink et al. 2000; Pauldrach et al. 2003; Puls et al. 2003a) that the WLR should be
independent of luminosity class were correct, a typical clumping factor
should be derived by “unifying” the different WLRs.
Key words: stars: atmospheres / stars: distances / stars: early-type / stars: fundamental parameters / stars: mass loss / stars: winds, outflows
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.