Issue |
A&A
Volume 407, Number 2, August IV 2003
|
|
---|---|---|
Page(s) | 643 - 653 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20030744 | |
Published online | 17 November 2003 |
Asymptotic representation of low- and intermediate-degree p-modes in stars
Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Heverlee, Belgium
Corresponding author: Paul.Smeyers@ster.kuleuven.ac.be
Received:
27
February
2003
Accepted:
16
May
2003
A first-order asymptotic representation is developed for
low- and intermediate-degree p-modes in stars for which the
lower boundary of the resonant acoustic cavity is not located
close to the star's centre. To this end, a fourth-order system of
differential equations in the radial parts of the divergence and
the radial component of the Lagrangian displacement is adopted.
The lower boundary of the resonant acoustic cavity is considered
to be a turning point for one of the differential equations. As in
a previous asymptotic study of low-degree p-modes with high
radial orders, asymptotic expansion procedures applying to
self-adjoint second-order differential equations with a large
parameter are used by extension of these methods. The main result
is that, in contrast with the usual first-order asymptotic theory
for low-degree p-modes of high radial orders, the present
first-order asymptotic representation leads to small frequency
separations different from zero. The validity of the
asymptotic representation is tested for p-modes of the
equilibrium sphere with uniform mass density, since the modes of
this model are determined by means of exact analytical solutions.
Key words: stars: oscillations / methods: analytical
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.