Issue |
A&A
Volume 393, Number 2, October II 2002
|
|
---|---|---|
Page(s) | 673 - 683 | |
Section | Celestial mechanics and astrometry | |
DOI | https://doi.org/10.1051/0004-6361:20020999 | |
Published online | 23 September 2002 |
The influence on the spin vectors of asteroids from the Yarkovsky effect
Astronomiska Observatoriet, Box 515, 751 20 Uppsala, Sweden
Corresponding author: Erik.Skoglov@astro.uu.se
Received:
12
April
2002
Accepted:
25
June
2002
The spin vector evolution of a solar system object is connected to the orbital evolution of the body. The orbital and spin elements of the asteroids are affected by gravitational as well as thermal forces. When the spin rate, shape and orbital evolution of an object are known, the secular spin vector evolution may be determined. In this study, the orbital and spin vector evolutions of a number of artificial objects are numerically integrated, with special consideration taken to the seasonal and diurnal variants of the Yarkovsky force. The thermal force known as the Yarkovsky effect may perturb the orbital elements of an asteroid and thereby also affect the direction of the spin vector. Concentrating on spherical bodies, the spin axis evolution of bare and regolith covered main belt objects with radii larger than 50 m is examined, especially considering the seasonal and diurnal Yarkovsky forces. The combined effects on the spin vector evolution from these forces and induced periodical perturbations on the orbital elements are also studied. It is found that the effects on the spin vector evolution from the Yarkovsky force always are small or negligible for kilometer sized objects over time periods of ~100 Myr or more. The effects are doubled when the object radius is halved. During a given time period, the influences from the seasonal Yarkovsky force on the spin vector evolution of bare basaltic bodies are about 2–3 times as large as those on iron-rich ones. However, since the expected time, trot, before the spin axis direction is changed by a collisional event is about half as long for a bare basaltic object as for an equal sized iron-rich one, the seasonal Yarkovsky force may be of approximately the same importance for both classes of objects. The effects on regolith covered objects from this force are considerably smaller. On the other hand, the influences from the diurnal Yarkovsky effect are much stronger on regolith covered objects than on bare ones. The effect on the spin vector evolution from both variants of the Yarkovsky force seems to be small for all the objects studied unless very long time periods are considered. The size of trot is dependent on several factors, but the influences from the Yarkovsky force on the spin axis evolution over the present age of the solar system are always negligible when the object radius is larger than ~10 km. Note that the effects studied in this paper should not be confused with the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect.
Key words: minor planets, asteroids / celestial mechanics
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.