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Abstract. The spin vector evolution of a solar system object is connected to the orbital evolution of the body. The orbital and
spin elements of the asteroids are affected by gravitational as well as thermal forces. When the spin rate, shape and orbital
evolution of an object are known, the secular spin vector evolution may be determined. In this study, the orbital and spin vector
evolutions of a number of artificial objects are numerically integrated, with special consideration taken to the seasonal and
diurnal variants of the Yarkovsky force. The thermal force known as the Yarkovsky effect may perturb the orbital elements of
an asteroid and thereby also affect the direction of the spin vector. Concentrating on spherical bodies, the spin axis evolution
of bare and regolith covered main belt objects with radii larger than 50 m is examined, especially considering the seasonal
and diurnal Yarkovsky forces. The combined effects on the spin vector evolution from these forces and induced periodical
perturbations on the orbital elements are also studied. It is found that the effects on the spin vector evolution from the Yarkovsky
force always are small or negligible for kilometer sized objects over time periods of ∼100 Myr or more. The effects are doubled
when the object radius is halved. During a given time period, the influences from the seasonal Yarkovsky force on the spin
vector evolution of bare basaltic bodies are about 2–3 times as large as those on iron-rich ones. However, since the expected
time, trot, before the spin axis direction is changed by a collisional event is about half as long for a bare basaltic object as for
an equal sized iron-rich one, the seasonal Yarkovsky force may be of approximately the same importance for both classes of
objects. The effects on regolith covered objects from this force are considerably smaller. On the other hand, the influences from
the diurnal Yarkovsky effect are much stronger on regolith covered objects than on bare ones. The effect on the spin vector
evolution from both variants of the Yarkovsky force seems to be small for all the objects studied unless very long time periods
are considered. The size of trot is dependent on several factors, but the influences from the Yarkovsky force on the spin axis
evolution over the present age of the solar system are always negligible when the object radius is larger than ∼10 km. Note that
the effects studied in this paper should not be confused with the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect.
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1. Introduction

The diurnal variant of the “Yarkovsky force” was discovered
by Ivan Yarkovsky a century ago but the first modern study
of the effect was performed by Öpik (1951). Essentially, the
Yarkovsky force is a recoil force due to thermally reemitted
radiation from object regions of different temperatures. For
the normal asteroid, the effect has a seasonal part related to
the revolution around the Sun (e.g. Rubincam 1995, 1998)
and a diurnal part related to the rotation of the object (e.g.
Vokrouhlický 1998a, 1998b). Which variant of the force will
be dominating for a particular object depends on the physi-
cal, rotational and thermal properties of the body (e.g. Farinella
et al. 1998). The effects on the orbital evolution from both the
diurnal and the seasonal Yarkovsky forces seem to be most im-
portant for objects with radii of approximately (0.1–100) m.
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Comparatively few objects in this size range are known obser-
vationally. However, a number of near-Earth objects with diam-
eters of (10–100) m have been observed (e.g. Rabinowitz et al.
1993). Smaller objects are less affected by the Yarkovsky effect
since they are more isothermal. Larger objects are too massive,
with more mass per area, to be subjected to strong Yarkovsky
accelerations.

Both force variants may be important for the transport of
material from the asteroid main belt to the inner solar sys-
tem. The Yarkovsky effect may be important in a slower phase,
∼(10–100) Myr, transporting a body into a secular or mean mo-
tion resonance (e.g. Vokrouhlický & Farinella 1998a; Bottke
et al. 2000). The object may then fast evolve a planet crossing
orbit.

One thermal effect, the Yarkovsky-O’Keefe-Radzievskii-
Paddack (YORP) effect, may be important in changing both
the spin rate and spin axis direction of certain asymmetrically
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shaped asteroids. Spherical and spheroidal bodies or triaxial
ellipsoids will not be affected by the YORP effect (Rubincam
2000).

The aim of this study is to investigate the role of another
effect related to the Yarkovsky force on the spin axis evolu-
tion of asteroids. The perturbation of the orbital evolution due
to the Yarkovsky effect will also affect the spin axis evolution
of the object. The orbital and spin elements of the asteroids
are affected by gravitational and thermal forces. The Sun ex-
erts a gravitationally related torque on all objects in the solar
system, causing a precession motion of their spin vectors. The
major planets are also affecting the orbital and spin vector evo-
lutions of the asteroids by gravitationally related perturbations.
When the spin rate, shape and orbital evolution of an object are
known, the secular spin vector evolution may be determined,
using the parameters X = (cos η) and ψ of the spin vector direc-
tion. The obliquity parameter η is defined as the tilt of the spin
axis from the normal to the orbital plane and ψ is the preces-
sion angle in longitude. In this study, the orbital and spin vector
evolutions of a number of artificial objects are numerically in-
tegrated, with special consideration taken to the seasonal and
diurnal variants of the Yarkovsky force.

From the standpoint of Yarkovsky force influences, aster-
oids can be considered to be “small” or “large”. For a “large”
object, the thermal penetration depth is small as compared to
the object radius. For a smaller object however, one side will
be thermally communicating with the other and the object will
be more isothermal. The thermal penetration depth is depend-
ing on the thermal properties of the object, but an asteroid with
a radius larger than ∼20 m can be considered large when con-
sidering both variants of the Yarkovsky force regardless of the
material. The rotational properties of real solar system bodies
that can be considered “small” in this respect are almost totally
unknown. The objects with known spin properties are typically
kilometer sized and larger. No thermally “small” objects will
be considered in this study, note also that for such objects the
Poynting-Robertson force is becoming increasingly more im-
portant with diminishing radius. Also, since the objects are as-
sumed to be spherical, the YORP effect may be ignored.

2. The effects from the Yarkovsky force
on the orbital evolution

2.1. The diurnal Yarkovsky force

The reasoning when examining the diurnal and seasonal effects
is similar (e.g. Vokrouhlický 1998a, 1998b; Rubincam 1995,
1998). The forces are somewhat different though, e.g. will the
seasonal effect always decrease the semimajor axis of the orbit,
an effect known as thermal drag, at least when the orbital ec-
centricity is not very high (Spitale & Greenberg 2001), while
the diurnal effect will cause the orbit to expand for a prograde
rotator and to shrink for an object with a retrograde rotation.
The influences on the other orbital elements are in a similar
way dependent on the orbital and spin parameters and on which
Yarkovsky force variant is considered (see also e.g. Bottke et al.
2000; Spitale & Greenberg 2002).

In this study, the concentration will be on spherical bodies
with circular orbits. Also, the spin periods are supposed to be
short as compared to the orbital periods.

The method used by Vokrouhlický (1998a) will be followed
in order to examine the diurnal effects on the orbital elements.

In a solid medium, the heat conduction equation can be de-
scribed by:

ρC(∂T/∂t) = K∇2T (1)

where ρ is the material density, C is the specific heat, K is the
thermal conductivity and ∇2 is the Laplace operator

This gives the temperature T throughout the medium at any
time t.

A boundary condition on the surface of the object is also
needed:

EσT 4 + K(n · (∂T/∂r)) = Aabsε (2)

where E is the emissivity, σ is the Stefan-Boltzmann constant,
n is the unit vector normal to the body’s surface, (n · (∂T/∂r))
describes the temperature variance inside the body, Aabs is the
absorption coefficient and ε is the external radiation flux.

The first left-hand term describes the energy thermally rera-
diated by the body while the second term is the energy con-
ducted to deeper body layers. The right-hand side gives the en-
ergy entering the unit surface area of the body per unit time.

Generally, the exact appearance of the thermal force will
depend on several factors. Among these are the shape of the
body and whether or not the body is dynamically relaxed, i.e.
in stable rotation around the shortest semi-axis of the object.
In this study, a dynamically relaxed spherical body having a
radius R and an angular velocity of the rotation, ω, is assumed.

If ε∗ is the solar radiation flux at the position of the object,
an auxiliary temperature T ∗ can be defined:

T∗ = [Aabsε∗/(Eσ)]1/4. (3)

Now, the thermal parameter, Θ, and the dimensionless scaled
radius, R′, are:

Θ =
(ρCKω)1/2

EσT 3∗
(4)

R′ = R/lS (5)

where lS is the thermal length:

lS = [K/(ρCω)]1/2. (6)

Now define:

λ ≡ Θ/(21/2R′). (7)

Use the auxiliary real functions A(x), B(x), C(x), D(x), E(x)
and the phase δ(x):

A(x) = −(x + 2) − ex [(x − 2) cos x − x sin x] (8)

B(x) = −x − ex [(x − 2) sin x + x cos x] (9)

C(x) = A(x) + [λ/(1 + λ)]{3(x + 2)

+ex[3(x − 2) cos x + x(x − 3) sin x]} (10)
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D(x) = B(x) + [λ/(1 + λ)]{x(x + 3)

−ex[x(x − 3) cos x − 3(x − 2) sin x]} (11)

E(x)eiδ(x) =
A(x) + iB(x)
C(x) + iD(x)

· (12)

Let ER′ = E(21/2R′) and δR′ = δ(21/2R′).
Now the thermal force per unit of body mass, f , can be

expressed. If an non-rotating X, Y, Z reference system is intro-
duced (Vokrouhlický 1998a), with the Z-axis aligned with the
spin axis of the object and the solar position permanently in the
XZ-plane, the three components of f are (assuming isotropic
thermal emission):

fX + i fY = −4Aabs

9
Φ

sin θ0

1 + λ
ER′e−iδR′ (13)

fZ = −4Aabs

9
Φ

cos θ0

1 + λ
(14)

where θ0 is the solar colatitude and

Φ ≡ (πR2ε∗)/(mc) (15)

where m is the object mass and c is the speed of light
Obviously, f will decrease with increasing body mass. The

importance of the effect will also be diminished when the size
of the body is increased.

Now, the secular perturbations on a, the semi-major axis of
the orbit, and I, the orbital inclination, can be calculated:

(da/dt) = −8Aabs

9
Φ

n
ER′ sin δR′

1 + λ
(s · N) (16)

(dI/dt) =
2Aabs

9
Φ

na

× (s · P)(1 − ER′ cos δR′)(s · N) + (s · Q)(ER′ sin δR′)
1 + λ

(17)

(s · N) = cos η = X (18)

(s · P) = sinψ(1 − X2)1/2 (19)

(s · Q) = cosψ(1 − X2)1/2 (20)

where n is the object’s orbital mean motion around the Sun,
n = (GMa−3)1/2, G is the gravitational constant, M is the solar
mass, s is the spin vector, N is the unit vector normal to the
mean orbit, P is the position vector of the mean pericenter and
Q = N × P. The spin parameter η is the obliquity, i.e. the tilt of
the spin axis from the normal to the orbital plane and ψ is the
precession angle in longitude. In Eqs. (16) and (17), a circu-
lar orbit is assumed. Also, the rotation frequency of the object
around its spin axis is assumed to be much larger than the mean
motion frequency of the object around the Sun. A more general
solution can be found in Vokrouhlický (1999).

2.2. The seasonal Yarkovsky force

A more general model, treating the asteroids as spheres (e.g.
Rubincam 1998), must be used for thermally “small” objects.
However, since only thermally “large” objects are considered,
a plane-parallel model can be used as a valid approximation for
the bodies in this study. Thus, the method used by Rubincam
(1995) as modified by Bottke et al. (2000) will be followed in
order to examine the seasonal Yarkovsky effect on the orbital
elements.

In a solid medium, using the plane-parallel model, the heat
conduction equation can be described by:

ρC(∂T/∂t) = K(∂2T/∂z2) (21)

where ρ is the material density, C is the specific heat, K is the
thermal conductivity and z is the depth below the surface (pos-
itive downward).

This gives the temperature T throughout the medium at any
time t.

The boundary condition on the surface of the object can
now be expressed as:

EσT 4 − K(∂T/∂z)z=0 = (1 − A)ε (22)

where E is the emissivity, σ is the Stefan-Boltzmann constant,
(∂T/∂z) describes the temperature variance inside the body,
A is the albedo and ε is the external radiation flux.

Still, a spherical body having a radius R and an angular
velocity of the rotation, ω, is assumed.

T can now be expressed as a sum of an average tempera-
ture, T0, constant throughout the object and a term ∆T , con-
taining all time-like and space-like temperature variations.

Using a Taylor expansion, we have the relation:

T 4 ≈ T 4
0 + 4T 3

0 ∆T. (23)

Now, T0 is found from:

EσT 4
0 = (1 − A)(εE/4)(aE/a)2(1 − e2)−1/2 (24)

where a and e are the semi-major axis and eccentricity of
the asteroid’s orbit, aE is the semi-major axis of the orbit of
the Earth and εE is the solar constant when a = aE, (εE =

1378 W m−2).
Finding ∆T is a more complicated process. For the details

of this and the general time evolution of the orbital elements
given by Lagrange’s planetary equations, see e.g. Rubincam
(1995).

If the longitude of the ascending node and the argument
of perihelion of the orbit is circulating uniformly, and circular
orbits are assumed, the secular perturbations from the seasonal
Yarkovsky force on the semi-major axis, a, and inclination, I,
of the asteroid’s orbit can be calculated after averaging over the
orbital period (Rubincam 1995; Bottke et al. 2000):

(da/dt) = − (1 − A)εE

3cρRn

a 2
E

a2

Φ1

1 + 2Φ1 + 2Φ 2
1

(1 − X2) (25)

(dI/dt) =
(1 − A)εE

24cρRn

a 2
E

a3
sin(2I)

Φ1

1 + 2Φ1 + 2Φ 2
1

(1 − 3X2) (26)
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where n is the object’s mean motion around the Sun, R and ρ
are the object’s radius and material density and c is the speed
of light

The thermal function Φ1 is defined as:

Φ1 =
(KρnC)1/2

(32)1/2EσT 3
0

(27)

X = cos η, where η is the obliquity.
A larger body radius will decrease the effect on the orbital

elements. The seasonal Yarkovsky effect will thus be negligible
when the body radius is very large.

As noted by Rubincam (1995), a linearized solution
will slightly overestimate the influences from the seasonal
Yarkovsky force. According to the nonlinearized model used
by Vokrouhlický & Farinella (1998b), this overestimation
is ∼15% for thermally large objects.

Other representations of the semi-major axis change due to
the seasonal Yarkovsky force can be seen e.g. in Farinella et al.
(1998) and in Vokrouhlický (1999).

3. The connection between the orbital
and spin vector evolutions

The evolution of the spin axis of a solar system object is
connected to the orbital evolution. Several equivalent repre-
sentations of the spin vector evolution equations are possible.
The spin vector evolution of the major planets was studied by
Laskar & Robutel (1993) and Laskar et al. (1993). As for the
derivation of the equations of spin vector evolution, see e.g.
these studies and the references given there. In Skoglöv et al.
(1996) and in Skoglöv (1997), the equations for the spin vector
evolution were adapted for the asteroids.

The orbital and spin elements of the asteroids are affected
by gravitational as well as thermal forces. The Sun exerts a
gravitationally related torque, L, on all objects in the solar sys-
tem. This torque is also causing a precession motion of the spin
vectors of the objects. Limited to first order in R/r (the equato-
rial radius of the object divided by the distance to the Sun), the
torque can be approximated as:

L =
3GM

r3
r̂ × J · r̂ (28)

where r̂ is the unit vector in the direction of the Sun, G is the
gravitational constant, M is the solar mass and J is the inertia
tensor.

The orbital evolution of a real asteroid is also subjected
to gravitational perturbations from the major planets. Knowing
the orbital evolution, it is possible to integrate the secular spin
vector evolution numerically using the parameters X and ψ of
the spin vector direction. If the obliquity parameter η is defined
as the tilt of the spin axis from the normal to the orbital plane
and ψ is the precession angle in longitude, then X = cos η. The
basic equations of precession used in the spin vector integra-
tions are:

H(X, ψ, t) = (α/2)(1 − e(t)2)−3/2X2 + (1 − X2)1/2(A(t) sinψ

+B(t) cosψ) − 2C(t)X (29)

with

A(t) = 2(q̇ + p(qṗ − pq̇))/(1 − p2 − q2)1/2 = (dI/dt) cosΩ

−(dΩ/dt) sin I sinΩ (30)

B(t) = 2( ṗ − q(qṗ − pq̇))/(1 − p2 − q2)1/2 = (dI/dt) sinΩ

+(dΩ/dt) sin I cosΩ (31)

C(t) = (qṗ − pq̇) = (dΩ/dt) sin2(I/2) (32)

p = sin(I/2) sin(Ω) (33)

q = sin(I/2) cos(Ω) (34)

ṗ = (∂p/∂t) (35)

q̇ = (∂q/∂t) (36)

(dψ/dt) = α(1 − e(t)2)−3/2X − X(1 − X2)−1/2(A(t) sinψ

+B(t) cosψ) − 2C(t) (37)

(dX/dt) = −(1 − X2)1/2(A(t) cosψ − B(t) sinψ) (38)

where H is the Hamiltonian associated with the spin angular
momentum of the object, t is the time, I is the orbital inclina-
tion, e is the orbital eccentricity and Ω is the longitude of the
ascending node, (dψ/dt) = (∂H/∂X), (dX/dt) = −(∂H/∂ψ).

The term containing C(t) is usually small and may often be
omitted when examining the spin vector evolution of asteroids,
in particular when comparing with the uncertainties in the spin
parameter α. However, since small model related differences
are examined, it will always be included in the spin vector in-
tegrations in this study.

The precession parameter α depends on several object
properties (e.g. Laskar & Robutel 1993; Laskar et al. 1993;
Skoglöv et al. 1996):

α =
3GMγ

2ωa3
=

3πγPspin

P 2
orb

(39)

where G is the gravitational constant, M is the solar mass, ω is
the angular spin velocity, a is the semi-major axis of the orbit,
γ is the dynamical ellipticity, Pspin is the spin period and Porb is
the orbital period. The precession parameter may be variable,
e.g. if the semi-major axis (a) changes considerably over time.
This is the case for many inner solar system asteroids.

The dynamical ellipticity (γ) depends on the shape and in-
ternal mass distribution of the considered object. Often, aster-
oids have been modelled as homogeneous ellipsoidal objects
with semi-axes a ≥ b ≥ c, in stable rotation around the shortest
c-axis. If the spin frequency is much higher than the precession
frequency, the dynamical ellipticity can be defined as:

γ =
1
2
− c2

a2 + b2
· (40)
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4. The spin vector evolution

4.1. Spin vector integration excluding the Yarkovsky
force

The normal rotational conditions of real asteroids with R <
1 km are almost totally unknown. The objects in this study are
assumed to be dynamically relaxed, their spin vectors are not
subjected to changes that are fast as compared to the orbital pe-
riod, e.g. wobbling and tumbling motions are not considered. It
is not clear to what extent this is normal for real subkilometer
sized bodies. The time scale for damping to a stable rotation
around the principal axis depends on several object properties,
including the spin rate, size, shape and material density (Burns
& Safronov 1973). Small, slowly rotating objects may have
very long damping times (Harris 1994). The damping time may
thus be very different for various objects. However, following a
sudden spin change due to a collision or near passage, the typi-
cal relaxation time for subkilometer sized bodies may be in the
order of ∼(1–20) Myr.

The thermal parameters ρ, the material density, C, the
specific heat and K, the thermal conductivity, depend on the
body material. The values in this study are the same as in
Farinella et al. (1998), but can also be found e.g. in Rubincam
(1995) for basaltic and regolith-covered materials and in Burns
et al. (1979) for iron-rich material.

basaltic material:
K = 2.65 Wm−1 K−1, ρ = 3500 kg m−3, C = 680 J kg−1 K−1

iron-rich material:
K = 40 Wm−1 K−1, ρ = 8000 kg m−3, C = 500 J kg−1 K−1

regolith-covered material:
K = 0.0015 Wm−1 K−1, ρ = 1500 kg m−3, C = 680 J kg−1 K−1.

For a real regolith-covered object, it may be more realistic in-
stead to use a bulk density of ρ = 3500 kg m−3, assuming a
stony object covered by a regolith with the values of C and K
seen above. Also, in the present study it is always assumed that
in case of regolith-covered bodies the regolith is so deep that
the longest period thermal pulses never sense the bottom of
the regolith layer. A more rigorous treatment may be found in
Vokrouhlický & Broz (1999).

In addition, treating the objects as blackbodies, the emis-
sivity E = 1, the albedo A = 0 and the absorption coeffi-
cient Aabs = 1.

For a perfect sphere, the three body axes are related as
a = b = c. Thus, according to Eqs. (39) and (40), γ = α = 0 and
the direct influences on the spin vector evolution from varia-
tions in a and e disappear. As can be seen in Skoglöv & Erikson
(2002), the variations and size of the orbital inclination, I, are
the most important causes for the size of the regular obliquity
changes of main belt objects (see also Fig. 1). Note that when
the Yarkovsky effects are calculated, the orbital inclination evo-
lution depends on the evolution of a (Eqs. (17) and (26)). The
variations in a and I used in this study also assume e ≡ 0.

The spin vector evolution depends on the orbital evolu-
tion. The evolution of the orbital elements of an object due
to Yarkovsky forces is also dependent on the direction of the
spin axis. Since the aim of this study is to examine the spin
axis evolution due to the same forces, when the Yarkovsky ef-
fect is included the orbital and spin vector evolutions must be
integrated simultanously, combining the orbital evolution due
to the Yarkovsky force with the connection between the or-
bital and spin vector evolutions described in the earlier section.
Using some suitable initial values, all spin vector evolutions
were integrated numerically with a time step of 3.125 yr, a time
step that was found necessary and sufficient.

The evolutions were integrated using an initial semi-major
axis of the orbit of 3 AU, five different initial orbital inclina-
tions, 0.0001◦, 2.5◦, 5◦, 10◦ and 20◦, and, when the Yarkovsky
force was included, three different object radii, 50 m, 100 m
and 1000 m with the sets of thermal parameters mentioned
above. The situation for five different initial X-values, X = 0,
X = ±0.5 and X = ±0.9, was investigated. The initial ψ = 0.

Due to gravitational and thermal forces, the orbits of
the real solar system objects are variable. Initially, when the
Yarkovsky force was excluded, all orbital elements except Ω,
the longitude of the ascending node, were kept constant.

In all integrations, Ω was assumed to be circulating, a
full 360◦ in 25 000 years, rather than librating. For real main
belt asteroids with a in the range [2.5 , 3.5] AU, this seems to
be a reasonable assumption. When the other orbital elements
are perturbed, by gravitational or Yarkovsky forces, (dΩ/dt)
may also change. However, since the results were not affected
significantly by any reasonable changes in (dΩ/dt) for the per-
turbed models, this will be ignored. The initial eccentricity, e,
was assumed to be zero, i.e. the orbits were circular. Since the
perturbations in the eccentricity due to the Yarkovsky effect
are proportional to the eccentricity itself, i.e. (de/dt) ∝ e (e.g.
Rubincam 1995, 1998; Vokrouhlický 1998a), such an orbit will
stay circular, (de/dt) ≡ 0, also when Yarkovsky forces are in-
cluded.

First, the Yarkovsky forces were ignored and the orbital in-
clination and semi-major axis stayed constant during the inte-
gration period, Ω was circulating. The obliquity variations are
larger when the orbital inclination is higher (Fig. 1), something
that also was noted by Skoglöv & Erikson (2002).

4.2. Spin vector integration including the seasonal
Yarkovsky force

The orbital and spin vector evolutions were integrated numeri-
cally, using the same initial values as before but now including
the influences from the seasonal Yarkovsky force. The influ-
ences on a and I from other forces were ignored.

The differences in X between the spin axis evolutions ex-
cluding and including the seasonal Yarkovsky force, ∆XYar,s,
can be seen in Fig. 2 for some typical objects. The result can
be described as an oscillating function with the amplitude in-
creasing with time and decreasing with a larger object radius.
The frequency of the oscillation depends on the size of (dΩ/dt),
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so that faster changes in Ω decrease the period. The amplitude
increase of ∆XYar,s is independent of the rate of (dΩ/dt).

The effects on the spin vector evolution from the seasonal
Yarkovsky force are proportional to the orbital inclination per-
turbations for the different materials and were largest for the
bare basaltic objects, about 2.6 times smaller for the iron-rich
objects and ∼14 times smaller for the regolith covered objects
(ρ = 1500 kg m−3). With a higher bulk density, 3500 kg m−3,
the effects on the regolith-covered asteroids were ∼1.5 times
smaller than for the lower density.

The seasonal Yarkovsky force acting on the semi-major
axis of the orbit is most effective when the spin axis of the
body is in the orbital plane, due to large seasonal differences.
When the axis is normal to the orbital plane, X = ±1, there is
no acting thermal drag (Eq. (25)). However, the effects on the
orbital inclination evolution are largest for X = ±1 (Eq. (26)),
see also Rubincam (1995) and Bottke et al. (2000). Note that
the influence on the orbital inclination changes sign when
X = ±3−1/2 ≈ ±0.58. The seasonal Yarkovsky force will in-
crease the inclination when X2 < 3−1 and decrease it when
X2 > 3−1. The sizes of (da/dt) and (dI/dt) due to the seasonal
Yarkovsky force depend on several factors, including some that
are time variable. For a bare basaltic object with I ≈ 2.5◦ and
R = 50 m, a may decrease by typically (10−4−10−3) AU over
a period of 1 Myr. During the same time period, the typical
changes in I are approximately (0′′−3′′).

For the objects in this study, the deviations due to the sea-
sonal Yarkovsky force tend to increase with the inclination, re-
gardless of initial X. For a given X-value, the effect on the or-
bital inclination is largest for I = 45◦, (Eq. (26)). Also, the spin
axis variations not related to the Yarkovsky effect are larger
when the orbital inclination is higher, Fig. 1, and when initial X
is close to 0 (see also Skoglöv & Erikson 2002). Thus, the in-
fluences from the Yarkovsky force will then be very variable
over time for a given initial X. These effects may explain the
larger ∆XYar,s found when the orbital inclination is higher.

The results for the 100 and 1000 meter radius objects are
similar to those for the 50 m radius objects in that ∆XYar,s vary
in an oscillating way. However, ∆XYar,s is halved when the
object radius is doubled. This is expected, since the effects
on (da/dt) and (dI/dt) are halved in the same way when the
radius is doubled and the other parameters are kept constant
(see Eqs. (25) and (26)).

After 1 Myr, assuming a 50 m radius bare basaltic body, de-
pending on initial X, the amplitude of∆XYar,s is ∼(10−11−10−10)
for an initial I = 0.0001◦, (0.4−3.6)×10−6 for an initial I = 2.5◦
and increasing to (0.8−1.8) × 10−5 for an initial I = 20◦. The
sizes of the deviations are usually largest for initial X = 0. In
some cases, when initial I = 20◦, they may be slightly larger
for other initial X. A typical situation can be seen in Fig. 2.

4.3. Spin vector integration including the diurnal
Yarkovsky force

The spin vector evolution with the diurnal Yarkovsky force
as perturbing force was integrated analogous to the earlier in-
vestigations. The differences between the spin axis evolutions
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Fig. 1. The X-values (X = cos η; where η is the obliquity) obtained
for a time period of 1 Myr for two hypothetical objects. Two constant
orbital inclinations (I) are used: A: I = 2.5◦ and B: I = 20◦. The semi-
major axis of the orbit (a) is constant, a = 3 AU. For both objects, the
initial X = 0. The longitude of the ascending node (Ω) is circulating
a full 360◦ in 25 000 yr. The time-step of the spin-axis integration
is 3.125 yr. The precession parameter α = 0. The initial precession
angle in longitude (ψ) is 0. The tendency with increasing variations
in X with increasing inclination can be seen.

excluding and including the diurnal Yarkovsky force, ∆XYar,d,
can be seen in Fig. 3 for some objects. As when the seasonal ef-
fects were examined, the result can be described as an oscillat-
ing function, usually with the amplitude increasing uniformly
with time. As for the seasonal Yarkovsky force, the frequency
of the oscillation depends on the size of (dΩ/dt), so that faster
changes in Ω will decrease the period. The amplitude of the
∆XYar,d-oscillation is halved when the object radius is doubled
provided the other factors, including the rotation rate, are kept
constant and is independent of (dΩ/dt).

The amplitude of the ∆XYar,d-oscillation is dependent on
many factors, including the object radius, rotation rate, orbital
inclination, material and the initial X used. For a 50 m radius
regolith-covered object with ρ = 1500 kg m−3, the amplitude
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Fig. 2. The differences, ∆XYar,s, between the spin vector evolutions ex-
cluding and including the seasonal Yarkovsky force (X = cos η;
where η is the obliquity) obtained for a time period of 1 Myr for two
hypothetical bare basaltic objects. Two initial orbital inclinations (I)
are used: A: I = 2.5◦ and B: I = 20◦. For both objects, the initial X = 0
and the initial semi-major axis of the orbit (a) is 3 AU. The longitude
of the ascending node (Ω) is circulating a full 360◦ in 25 000 yr. The
radius of each object is 50 m. The time-step of the spin-axis integration
is 3.125 yr. The precession parameter α = 0. The initial precession an-
gle in longitude (ψ) is 0. ∆XYar,s is oscillating with an amplitude that
increases with time and orbital inclination and with a period depend-
ing on the size of (dΩ/dt).

of ∆XYar,d is ∼(5 × 10−5−4 × 10−4) after 1 Myr, depending on
the initial inclination and the rotational parameters. Assuming
equal sized objects with a rotational period of 0.5 h, ∆XYar,d is
about 3 times smaller for a regolith-covered object with a bulk
density of 3500 kg m−3, ∼102 times smaller for bare basaltic
objects and ∼103 times smaller for bare iron-rich asteroids.

The situation for several rotational periods between 0.5 h
and 20 h was examined. It was found that this factor did af-
fect ∆XYar,d to some extent. The smallest ∆XYar,d was generally

obtained for a rotational period of 0.5 h and the largest for
a period of ∼(5–20) h. However, for the regolith-covered ob-
jects with ρ = 1500 kg m−3, where the importance of the
diurnal Yarkovsky force is greatest, the increase in ∆XYar,d

was only about 1.4 times when the period was increased
from 0.5 h to 5 h.

For a fast rotator, an increase in rotation rate will decrease
the temperature differences between day and night and the di-
urnal Yarkovsky effect will decrease in importance. Note how-
ever that for a very slow rotator an increase in rotation rate will
increase the thermal lag angle while the effects on the tempera-
ture distribution will be negligible. In this case, the importance
of the diurnal Yarkovsky effect may be increased.

The effects due to different orbital inclination sizes are
smaller than for the seasonal Yarkovsky force and are mostly
caused by the increasing variations in X when I is larger.

The rates of (da/dt) and (dI/dt) due to the diurnal Yarkovsky
force may be very variable. However, for a regolith-covered
object with ρ = 1500 kg m−3, initial I = 2.5◦, R = 50 m and a
rotation period of 0.5 h, a may change by typically (0.5−3) ×
10−3 AU over a time period of 1 Myr. During the same time
period, the typical changes in I are approximately (3′′−15′′).
The figures for other materials will be lower.

4.4. Spin vector integration including the Yarkovsky
force and non-Yarkovsky force related
perturbations

The dynamical evolution of the orbital elements of a real body
is perturbed by several other forces besides the Yarkovsky
force. In the case of large asteroids, the most important per-
turbations are due to gravitational forces.

In order to simulate some of these other effects, an addi-
tional perturbation was added to the orbital elements a and I.
Without the Yarkovsky effect added, a varied periodically be-
tween 2.99 AU and 3.01 AU, a full period in 15 000 years.
Three periodic inclination variations were examined, 0◦−5◦,
7.5◦−12.5◦ and 17.5◦−22.5◦. The initial inclinations were re-
spectively 2.5◦, 10◦ and 20◦. In all three cases, the period was
20 000 yr, Ω was still circulating a full 360◦ in 25 000 years.
For middle main belt objects, the main variations in I and Ω
due to gravitational perturbations are typically of these am-
plitudes and periods, at least when the bodies are unaffected
by strong secular or mean motion resonances with the major
planets. However, for real bodies, the evolution of I is usually
affected significantly by several orbital frequencies. The main
period of the variations in I is often the same as the circulat-
ing period of Ω. The frequency of the gravitationally related
variation in a may be even higher than assumed here. Often,
the amplitudes are even smaller than 0.01 AU and varying over
time in a very non-uniform way. Real asteroids would of course
also experience orbital eccentricity perturbations.

First, the spin vector evolution was integrated including
only the induced periodical perturbations and thus, since the
Yarkovsky force was excluded, the evolution is independent
of object radius. Note though that a spherical shape is still
assumed. Regardless of initial X, the spin vector evolution is
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Fig. 3. The differences, ∆XYar,d, between the spin vector evolutions ex-
cluding and including the diurnal Yarkovsky force (X = cos η; where η
is the obliquity) obtained for a time period of 1 Myr for two hypothet-
ical regolith-covered objects, ρ = 1500 kg m−3. Two initial orbital
inclinations (I) are used: A: I = 2.5◦ and B: I = 20◦. For both objects,
the initial X = 0 and the initial semi-major axis of the orbit (a) is 3 AU.
The rotation period is 0.5 h. The longitude of the ascending node (Ω) is
circulating a full 360◦ in 25 000 yr. The radius of each object is 50 m.
The time-step of the spin-axis integration is 3.125 yr. The precession
parameter α = 0. The initial precession angle in longitude (ψ) is 0.

regular, but not as uniform as when the orbital inclination is
constant. The results for a typical object can be seen in Fig. 4.
As when the orbital inclination is constant, the variations are
larger when the inclination is higher and when initial X is
close to 0.

Then, the orbital and spin vector evolutions were inte-
grated using the same method as before, but combining the
changes in the orbital elements due to the Yarkovsky force
with those from the periodical perturbations. The differences
between the evolution displayed in Fig. 4 and the correspond-
ing one for a 50 m radius bare basaltic object having the same
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Fig. 4. The X-values (X = cos η; where η is the obliquity) obtained
for a time period of 1 Myr for a hypothetical object. The initial orbital
inclination (I) is 20◦. The inclination varies in a periodic way between
I = 17.5◦ and I = 22.5◦, the period is 20 000 yr. The initial semi-major
axis of the orbit (a) is 3 AU. The semi-major axis of the orbit varies
periodically between a = 2.99 AU and a = 3.01 AU, the period is
15 000 yr. The longitude of the ascending node (Ω) is circulating a
full 360◦ in 25 000 yr. The initial X = 0. The time-step of the spin-
axis integration is 3.125 yr. The precession parameter α = 0. The
initial precession angle in longitude (ψ) is 0.

initial conditions but also perturbed by the seasonal Yarkovsky
force are presented in Fig. 5. The same tendencies as with the
Yarkovsky force as the only perturbing force on a and I can
be seen, even though the amplitudes of ∆XYar,s and ∆XYar,d not
are changing quite as uniformly with time. However, the mag-
nitude of the differences for a given initial X and initial I is ap-
proximately the same as the ∆XYar,s or ∆XYar,d obtained when
non-Yarkovsky related perturbations of a and I were omitted,
compare Figs. 2A and 5.

5. Conclusions

5.1. Time scales for the spin vector evolution

Since the differences between models excluding and includ-
ing the Yarkovsky force tend to increase with time, it is of in-
terest to determine the time likely before the spin direction is
changed suddenly in a drastic way due to a collision with an-
other object. Smaller objects can be expected to be much more
numerous than larger ones. Thus, during a certain time period
an object is more likely to suffer an impact from a small object
than from a large one. Naturally, the time expected between
two drastic rotational changes is shorter than that of total dis-
ruption, which would require much larger impacting objects.
These time scales are sensitive to a number of factors related to
impacting and spin velocities, material densities and strengths,
and sizes and numbers of possible impactors. Most of these
factors are highly variable or unknown for many solar system
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Fig. 5. The differences, ∆XYar,s, between the spin vector evolutions
excluding and including the seasonal Yarkovsky force (X = cos η;
where η is the obliquity) obtained for a time period of 1 Myr for a hy-
pothetical basaltic object. The initial orbital inclination (I) is 20◦, the
initial semi-major axis of the orbit (a) is 3 AU and the initial X = 0.
The radius of the object is 50 m. The evolution of the orbital elements
a and I is also subjected to the induced perturbation not related to the
Yarkovsky force also affecting the object in Fig. 4. The longitude of
the ascending node (Ω) is circulating a full 360◦ in 25 000 yr. The
time-step of the spin-axis integration is 3.125 yr. The precession pa-
rameter α = 0. The initial precession angle in longitude (ψ) is 0.

regions and bodies. Spin vector changes due to near passages
may also be important, especially for planet crossing objects.

Farinella et al. (1998) discussed the time scale, trot, for to-
tally changing the spin axis of a small main belt object due to
collisions. Following this reasoning, first neglect loss of angu-
lar momentum carried away by ejecta. Let the density of the
impacting object be the same as that of the target. Now, with a
size-independent rotational period of 5 h, Farinella et al. (1998)
estimated this time scale as:

trot = R4/3(1.88 × 104) (41)

with the results given in years.
For the objects in this study, supposing an impactor density

of 3500 kg m−3, trot ≈ 3 Myr for a basaltic body with a 50 m
radius, 9 Myr for a 100 m radius object and 0.2 Gyr for an 1 km
radius object. However, for the smaller objects, it may instead
be more realistic to adopt a spin period that depends on the
object radius (see Farinella et al. 1998). At least some small
objects may be very fast rotators (Ostro et al. 1999; Pravec et al.
2000). Assuming a connection between spin rate and radius,
ω ∝ R−1, and a spin period of 5 h when R = 0.5 km, which
implies a spin period of 0.5 h for a 50 m radius object, Farinella
et al. (1998) now estimated trot as:

trot = R1/2(3.34 × 106) (42)

still with the results given in years.
Now trot ≈ 24 Myr for a basaltic 50 m radius object

and 33 Myr for a 100 m radius object. For iron-rich bodies

with their heigher densities (∼8000 kg m−3), still assuming a
projectile density of 3500 kg m−3, all these time scales should
be increased by a factor ∼2. Analogously, a lower target den-
sity of 1500 kg m−3 would decrease the time scales by a fac-
tor ∼2. Since the effects from the seasonal Yarkovsky force on
bare basaltic objects are approximately 2–3 times larger than
on iron-rich ones during the same time period, this force may
be of about the same importance for the spin vector evolution of
both classes of bodies. The diurnal effects would be most im-
portant for regolith-covered objects, while the effects on bare
ones would be smaller. Note that a substantial loss of angular
momentum at the impact or a lower projectile density would
increase the time scales above to some extent. Also, remember
that the time of dynamical relaxation may be of the same order
as trot for many real subkilometer sized asteroids.

5.2. Discussion

After 30 Myr, the maximum ∆XYar,s-value for a bare basaltic
object with R = 50 m will be ∼(10−5−10−4) for an initial
I = 2.5◦ and ∼(10−4−5 × 10−4) for an initial I = 20◦, depend-
ing on initial X. For an equal sized regolith-covered object, with
ρ = 1500 kg m−3 and a rotation period of 0.5 h, the maximum
∆XYar,d after the same time is ∼(10−3−10−2). When the bulk
density is higher, ∆XYar,d is still smaller. The non-Yarkovsky
related variations in X are typically ∼(10–100) times larger
(Fig. 1). No numerical integrations longer than 30 Myr were
performed. However, the amplitudes of ∆XYar,s and ∆XYar,d

seem to increase approximately in a linear way with time, even
for orbital evolutions affected by the induced non-Yarkovsky
force related perturbations (Fig. 5). Thus, it may be possible
to estimate these amplitude variations over a longer time pe-
riod, at least for larger bodies with small Yarkovsky effect re-
lated perturbations. Increasing the radius to 1 km may, for the
bare basaltic objects, cause a maximum deviation in X due to
the seasonal Yarkovsky force of ∼(10−6−10−4) after 100 Myr.
A 1500 kg m−3 regolith- covered object of this size, with
a rotation period of 10 h, may have a maximum ∆XYar,d of
about ∼(10−4−2 × 10−3) after the same time. If the radius is
increased to 10 km, the maximum ∆XYar,d obtained after the
present age of the solar system (4.5 Gyr) may be estimated
to ∼(10−3−10−2).

In this study, Ω is assumed to be circulating with a pe-
riod of 25 000 yr. Naturally, the real objects will all have their
own orbital rates of change. The typical period seems to be
(20 000−30 000) yr for most asteroids at this distance (∼3 AU)
from the Sun. It was found that the maximum size of the de-
viations in X over a longer time period was insensitive to the
size of (dΩ/dt). The increasing differences between the orbital
inclination evolutions over time can be expected to be the main
reason for the divergences between the models.

The effects from the Yarkovsky force on the size of the
obliquity variations seem to be negligible, at least for kilome-
ter sized and larger asteroids, i.e. for objects whose spin prop-
erties have been measured and used in e.g. statistical studies.
For smaller objects, Yarkovsky forces may affect the spin vec-
tors to a larger extent, but since trot is shorter for such bodies,
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the influences on the spin vector from other forces seem to be
dominating. Also, very little is known of the spin properties of
real 50–100 meter sized bodies in the solar system.

The linearized model will slightly overestimate the ef-
fects from the seasonal Yarkovsky force (Rubincam 1995).
According to the nonlinearized theory by Vokrouhlický &
Farinella (1998b), this overestimation is ∼15% for thermally
“large” bodies. A higher albedo than used here (A = 0) would
also diminish the effects from the Yarkovsky force. The effects
on the spin vector evolution of real asteroids may thus be even
smaller than found here. It is therefore concluded that in most
cases a model including the gravitational perturbations from
the major planets but excluding the Yarkovsky force is suffi-
cient when the dynamical spin vector evolution of objects like
those in this study is examined. Naturally, a complete evolu-
tional model must include both dynamical and collisional fac-
tors, and for certain classes of objects also the YORP effect
and/or tidal forces due to near passages.

The investigations have been restricted to spherical bodies.
In addition, circular orbits have been assumed throughout the
integrations. However, the investigated spin vector evolution is
not directly dependent on the orbital eccentricity when spheri-
cal bodies are examined (Eq. (37)). In fact, the influences from
the eccentricity on the spin vector evolution are always small
unless the eccentricity is high. Note though that a higher ec-
centricity would influence the Yarkovsky related evolution of
the orbital elements to some extent (e.g. Spitale & Greenberg
2001).

The semi-major axis of the orbit is also affecting the results.
In this study, the concentration have been on objects where ini-
tial a = 3 AU. For objects closer to the Sun, the importance of
the Yarkovsky force will be increased. Repeating the numeri-
cal integrations for objects with initial a = 2 AU showed that
the appearance of ∆XYar,d and ∆XYar,s were qualitatively similar
but larger by, depending on the physical, thermal and orbital
parameters, a factor ∼(1–3.5).

The differences between a spherical and a spheroidal body
model were examined by Vokrouhlický & Farinella (1998b) re-
garding the seasonal effect. Assuming objects of the same sizes
and moderate flattenings, the rate of (da/dt) could be up to a
factor 2 larger or smaller for a spheroidal object as compared to
a perfect sphere. Even for quite extreme flattenings, this factor
was only between 2 and 3. Vokrouhlický (1998b) found simi-
lar results for the diurnal Yarkovsky force. For large main belt
objects, the precession parameter α is typically (10–20)′′ yr−1,
although both higher and lower values may be found (Skoglöv
et al. 1996). Since α ∝ a−3, the Yarkovsky effects on the semi-
major axis of the orbit may influence α and thus the precession
frequency (dψ/dt) to a higher extent for certain non-spherical
bodies. However, this will mainly affect the frequency of the
X-oscillations and not so much the size of the amplitudes.

The comparatively small differences between a spherical
and a non-spherical model makes it reasonable to assume that
the spherical model gives a good representation of the effects of
the Yarkovsky force on the spin vector evolution of spheroidal
main belt bodies, especially when regarding the amplitudes of
the X-oscillations.

It is not known whether or not a regolith layer is normally
present on (50–1000) m sized bodies, neither is the normal size
of this layer if present. It is reasonable to suspect that smaller
bodies are less likely to be regolith covered than larger ones,
due to lower gravities and likely faster rotations. The observa-
tions of and models used for real objects, usually larger than
those considered in this study, seem to indicate a large vari-
ation in conditions (e.g. McFadden et al. 1989). The thermal
skin depth, lS, i.e. the characteristic distance of solar radiation
penetration is (regarding the seasonal effect):

lS = K1/2/(ρnC)1/2. (43)

For main belt bodies (seasonal effect), this depth is a couple of
meters for a bare basaltic object and ∼(10–20) m for an iron-
rich one. For a regolith covered object, it is ∼(0.1–0.2) m. Thus,
a body with a regolith cover smaller than about this size may be
considered “bare” when the seasonal Yarkovsky force is con-
sidered. Note though that already a regolith cover of a few cen-
timeters could disturb the thermal wave.

A faster rotation of the (50–100) m radius objects which
would increase trot also seems to diminish the probability of a
regolith layer and thus increase the importance of the seasonal
effect as opposed to the diurnal.

It seems that the dynamical spin axis evolution of the main
belt asteroids generally is regular (Skoglöv et al. 1996; Skoglöv
& Erikson 2002). However, this is not the case for the inner
solar system asteroids (Skoglöv 1997, 1999), where the spin
vector evolution often is chaotic and very sensitive to the ini-
tial parameters used. Thus, a small disturbance, e.g. due to
Yarkovsky forces, could influence the spin vector evolution of
such objects in a non-negligible way. However, the expected
lifetime of these objects is short, and the orbital evolutions are
in general also subjected to chaos. It seems therefore probable
that the Yarkovsky force related influences on the sizes and lo-
cations of the chaos influenced zones in initial X will be small
or negligible. Note also that for planet-crossing asteroids with
very high orbital eccentricities, the spin axis evolution often
seems to be subjected to chaos and experience large and fast
changes regardless of initial spin vector direction due to purely
gravitational forces (Skoglöv 1999).
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