Issue |
A&A
Volume 391, Number 1, August III 2002
|
|
---|---|---|
Page(s) | 331 - 337 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361:20020656 | |
Published online | 29 July 2002 |
Iron abundance in the solar photosphere. Application of a two-component model atmosphere
1
Kiepenheuer–Institut für Sonnenphysik, Schöneckstr. 6, 79104, Freiburg, Germany
2
Max–Planck Institut für Aeronomie, 37191, Katlenburg–Lindau, Germany
Corresponding author: L. R. Bellot Rubio, lbellot@kis.uni-freiburg.de
Received:
4
March
2002
Accepted:
23
April
2002
A realistic two-component model of the quiet Sun is used to
determine the solar abundance of iron from the inversion of a number of
Fe I and Fe II spectral lines for which accurate atomic
parameters (oscillator strengths, central wavelengths, and collisional
broadening cross sections) exist. From 33 Fe I lines we infer an
abundance of , whereas we estimate
from 10 Fe II lines. These values are in
excellent agreement with the results of analyses based on realistic 3D
hydrodynamical simulations of the solar granulation, and imply a low
photospheric iron abundance. We investigate the effects of convective
motions and granular temperatures and conclude that both are important
for reliable abundance determinations. For Fe I lines, the
effects of convective motions can be simulated by using a
microturbulent velocity of about 1 km s-1, whereas it is possible
to account for temperature inhomogeneities by adopting an average
temperature stratification which is cooler than the Holweger &
Müller model in the upper layers.
Key words: Sun: photosphere / line: profiles / Sun: abundances / stars: atmospheres / stars: abundances
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.